

Working Paper

Coupling MATSim and UrbanSim: Software design
issues

Thomas W. Nicolai, Kai Nagel

TU Berlin, Germany Revision: 1
FP7-244557 20/12/2010

i

Contents

1	 Introduction ...3	

2	 Introducing new methods and concepts to integrate UrbanSim with MATSim...................5	

	 File-based coupling via data binding.. 6	

2.1 6	

	 Object-based coupling ... 8	

2.2 8	

	 Java Native Interface (JNI) .. 9	

2.2.1 9	

2.2.2	 JPype ... 10	

2.2.3	 Other object-based integration methods.. 13	

3	 Discussion ..15	

4	 Conclusion ..17	

5	 References ...18	

Coupling MATSim and UrbanSim __ 20/12/2010

ii

Coupling MATSim and UrbanSim

Thomas W. Nicolai, Kai Nagel
TU Berlin
Salzufer 17-19
10587 Berlin Germany

Teleph.: +49 30 314 29592
Telefax: +49 30 314 26269
nicolai@vsp.tu-berlin.de

20/12/2010

Abstract

This paper proposes different methods to couple UrbanSim and MATSim. The integration of
MATSim into UrbanSim aims to provide improved accessibility indicators from the (agent-
based) transport model that for instance incorporates congested home to work commute trips
in order to improve the urban simulation model.

The paper is organized as follows. The next section introduces the current integration ap-
proach. In section 2 pitfalls of the integration process and new methods and concepts are pre-
sented. The proposed methods and concepts are discussed in the following section. Finally
section 4 summarizes the results and provides a conclusion.

	

Keywords

UrbanSim, MATSim, Integration, Python, Java, XML, XSD, Data-Binding, PyXB, JAXB,
JNI, JEPP, CPython, Jython, JPype, Ja.Net, J#

Coupling MATSim and UrbanSim __ 20/12/2010

3

1 Introduction
This section aims at describing an already existing prototype approach integrating MATSim
into UrbanSim and its drawbacks.

UrbanSim simulates inter-relations between land use, transportation, the economy and the
environment; it is a tool for the integration of several models aimed at the simulation of urban
development. In order to improve simulation results, MATSim, a microscopic, multi-agent
based traffic model, is integrated with UrbanSim. For more detailed information about Ur-
banSim and MATSim, please see UrbanSim Manual (2009) and MATSIM www pages (ac-
cessed March 2010).

At this point an overview of the prototype integration approach and the consequent interac-
tion between UrbanSim and MATSim as an external travel model is presented. The following
steps are executed iteratively for each UrbanSim simulation year; in the following this is
called ”(UrbanSim) simulation year” (see also Figure 1):

1. UrbanSim initialization: For each simulation year UrbanSim needs a “current” data
set in order to perform the update. Either it gathers the data set from a given base year
– this is the case for the first (=initial) iteration – or from the previous iteration. In the
data set the initial state of an urban area for the current iteration is stored. It incorpo-
rates several tables like a person-, household-, building and job-table for instance.
These tables define the relations between persons, households and jobs as well as co-
ordinates of residences and workplaces for example.

2. Demand generation: In order to run MATSim as an external model UrbanSim creates
two input files that include the distribution of persons and their workplaces on a parcel
level extracted from the data set. Additional resources like the location of the traffic
network data are provided via a separate MATSim configuration file.

3. MATSim run: After executing the traffic simulation MATSim writes the computed ac-
cessibility indicators into an output file. UrbanSim reads this file and joins the acces-
sibility indicators into its own data set for the next iteration.

4. Next UrbanSim iteration: Resume with step 1, otherwise shutdown.

Coupling MATSim and UrbanSim __ 20/12/2010

4

	

Figure 1: Interaction between UrbanSim and MATSim.

The prototype approach uses a file-based communication between UrbanSim and MATSim,
through generating the travel demand stored as files for MATSim and importing the resulting
accessibility indicators in UrbanSim. The locations of input and output files, the attributes or
indicators of these files (like person id and respective home and work location) as well as the
MATSim configuration file are hard coded in both simulation frameworks. Besides, both
frameworks have their own configuration file that both need to be readjusted in order to run
different scenarios or case studies. Hence the following drawbacks of this prototype approach
can be stated:

1. Hard coded: Hard coded parts like the in- and output locations or the fixed defined in-
dicators to calculate make it impossible for users to change or adopt the settings for
their own needs without programming in Java or python or both. This results in an in-
convenient and inflexible setup of both frameworks in order to run them correctly on
different computers and to use them for various case studies.

2. Separate configuration files: Maintaining or adopting two separate configurations at
different locations leads to an inconvenient and error-prone setup in order to run both
frameworks with a meaningful and correct configuration.

3. Extensibility: Finally it is difficult to add new functionality or to improve this integra-
tion approach.

Because of these drawbacks this paper attempts to find an alternative, more robust and flex-
ible approach coupling UrbanSim and MATSim. Promising integration approaches are pre-
sented in the next section.

Coupling MATSim and UrbanSim __ 20/12/2010

5

2 Introducing new methods and concepts to integrate
UrbanSim with MATSim

As mentioned in section 1, the fragility of the current software integration is caused by the in-
convenient handling of the set of configuration files that are distributed on different locations
and the hard coded references in both simulation frameworks, e.g. to the input and output
files. That leads easily to inconsistent configurations when references change.

Therefore a first step is to centralize the configuration for a more convenient adjustment, to
reduce the user’s maintenance burden. The UrbanSim side is a perfect place to manage such a
centralized configuration, because it embeds MATSim as a plug-in. A straightforward way to
achieve a centralized configuration is to embed necessary MATSim parameter settings into
the travel model configuration section of the UrbanSim configuration (see Figure	 2) and to
extend the UrbanSim data processing in order to handle its new configuration part. Necessary
MATSim parameters are for example the location of input-files like the traffic network, or
settings like the sampling rate. It is needless to say that the embedded configuration must
adopt the syntax of the UrbanSim configuration.

	

Figure 2: Travel model configuration section that contains e.g. the sample rate and the actual
years to run.

In order to run MATSim, UrbanSim needs to pass the MATSim configuration settings and
the input files like the distribution of persons and facilities to MATSim. There are several
ways to realize that. This paper identifies two main concepts:

1. File-based coupling: Like in the current file-based approach, UrbanSim still generates
input data, but moreover it creates the MATSim configuration file. It is helpful to
validate the configuration file in order to achieve a robust and reliable file-based
communication, for example to avoid unintended side effects like a system crash. The
validation incorporates a syntax and parameter type (string, int, float) check. A de-
tailed explanation is given below in section 1.1.

2. Object-based coupling: A file-based communication is rather old fashioned. It is de-
sirable to communicate directly and bi-directionally between UrbanSim and MAT-

Coupling MATSim and UrbanSim __ 20/12/2010

6

Sim, so that UrbanSim will be able to access MATSim classes and its methods di-
rectly like other UrbanSim classes. A description how to apply such an object-based
communication is presented below in section 1.1.

The next parts of this section are organized as follows: First the file-based approach is intro-
duced. Then a couple of methods and projects to realize the object-based approach are shown.

2.1 File-based coupling via data binding

Once we have a centralized configuration-file, written by UrbanSim and readable by MAT-
Sim, that incorporates all parameter settings from the transport model section of the Urban-
Sim configuration, we are able to configure and run MATSim properly.

Technically it is not very difficult to generate such a configuration in XML1 and to extend
UrbanSim and MATSim to process an XML document using APIs2 like SAX3 and DOM4,
but it is error-prone and costly to build and maintain such extensions, especially when the pa-
rameters or the structure of the configuration changes. In the context of a robust and reliable
communication, this consideration leads to two main requirements for a centralized configu-
ration:

1. A mutual consent between UrbanSim and MATSim regarding the structure of the con-
figuration file is crucial. In other words a validation of the XML is essential (see
Figure 3).

2. In case of changes regarding the structure of the configuration, e. g. when a new param-
eter is added, the XML processing modules and classes in UrbanSim and MATSim
needed to be adopted automatically.

XML data binding fulfils both requirements. It is a technique to link different applications by
transforming XML documents into an object of a desired programming language. This allows
the transformation of a Python-object in UrbanSim into a Java-object on the MATSim side
via XML. This is similar to pass a configuration-object from UrbanSim to MATSim.

1 Extensible	 Markup	 Language
2 Advanced	 Programming	 Interface
3 Simple	 API	 for	 XML
4 Document	 Object	 Model

Coupling MATSim and UrbanSim __ 20/12/2010

7

The mutual consent about the structure of an XML-file and the data type definitions of its
elements and attributes (like string, boolean, float) is achieved by an associated XSD5. An
XSD is an abstract collection of metadata about an XML document. It is a “formalization of
the constraints, expressed as rules or a model of structure [...]” (van der Vlist (2002)). In other
words, an XSD acts like a validation checkpoint between different programmes exchanging
XML-documents (see Figure 3). A more comprehensive description of XSDs can be found at
World Wilde Web Consortium www pages (Accessed June 2010).

	

Figure 3: Validation of the generated XML MATSim configuration file in order to provide
robust file-based communication.

The second element, updating XML processing modules and classes in UrbanSim and MAT-
Sim, is achieved by additional software packages PyXB and JAXB. PyXB is an acronym for
Python W3C XML Schema Bindings. It is needed on the UrbanSim side to generate so called
binding classes. Analogously, JAXB generates binding classes on the MATSim side; it stands
for Java Architecture for XML Binding. These binding classes are like object templates, fol-
lowing the same XSD specification like the XML-file. Performing changes in the configura-
tion and hence in the related binding classes is simple. For this purpose the XSD needs to be
adapted to the new requirements, and PyXB and JAXB needs to generate the binding classes
again.

Once UrbanSim creates an instance of this binding class and fills it with the extracted MAT-
Sim settings from the transport model section of the UrbanSim configuration, this object in-
stance will be transformed into a XML representation and written to file. When starting
MATSim, UrbanSim passes the location of the XML-file as a programme argument to MAT-
Sim. MATSim validates the XML via the XSD and instantiates its own binding classes, filled
by the settings stored in the XML.

This data binding approach allows quick and convenient changes of the XML configuration
structure if required. Moreover it provides a robust and reliable file-based communication be-

5 XML Schema Document

Coupling MATSim and UrbanSim __ 20/12/2010

8

tween UrbanSim and MATSim.

Notes: For sake of completeness “generateDS”, another software package for Python should
be briefly introduced. “generateDS” stands for Generate Data Structures from XML Schema.
It was also tested as an alternative for PyXB, but since the generated XML-files did not con-
tain any XML-header it was not investigated in more detail.

For more detailed information on PyXB, JAXB and generateDS please refer to the project
websites (PyXB www pages (Accessed June 2010); JAXB www pages (Accessed June
2010); generateDS www pages (Accessed June 2010)).

2.2 Object-based coupling
As mentioned above, it is desirable to communicate directly on an object-based-level between
UrbanSim and MATSim. This would enable UrbanSim to generate the configuration and in-
put data as objects and pass them as arguments to MATSim. When MATSim finishes the
simulation run, it would pass the computed results back to UrbanSim as another object.

The reader may recall that UrbanSim and MATSim are implemented in different program-
ming languages; Python and Java. At this point it is useful to highlight that both programming
languages are very different. Some notable constraints for interaction at the object level are
listed as follows: The most important constraint is the different and incompatible byte code
representation. Java programmes are translated into Java byte code that is executed by the
Java Virtual Machine (JVM). The reference implementation Python is written in C, called
CPython. Analogue to JVM CPython compiles Python source code into Python byte code.
(For a discussion of Java-based implementations of Python see below.) Another distinction is
that Java employs static typing where type checking is performed during compile-time as op-
posed to run-time in dynamic typing languages like Python. As a last example Java provides
basic data types like int, float, double, char and boolean in contrary to Python where even
basic data types are objects.

Despite these and other unnamed constraints Python and Java can still communicate and
work with each other. At this point two interfaces, the Java Native Interface (JNI) and JPype,
are outlined that satisfy the following requirements:

1. Java to Python integration.

2. Interoperability, since UrbanSim and MATSim are used on different platforms (Win-
dows, Mac, Linux).

Coupling MATSim and UrbanSim __ 20/12/2010

9

For the sake of completeness also some other related projects that do not fit our requirements
are presented afterwards.

2.2.1 Java Native Interface (JNI)

The JNI is a native programming interface for Java programmes. It allows Java code that run
inside a JVM to interoperate with applications and libraries written in other programming
languages (see Figure	 4). In order to call native applications and libraries out of the JVM it is
required to implement an additional software layer in C. This additional software layer causes
some extra maintenance effort. This can be easily seen in the following steps summarizing
the process to write a simple Java application that prints a message on the screen via a C pro-
gramme (for more information refer to Liang (1999)):

1. Create a Java class that declares a native method.

2. Compile this class.

3. Create a C header file that defines the interface for the C implementation (generated by
the javah compiler).

4. Write the C implementation of the native method. The implementation must follow the
header file.

5. Compile the C implementation into a native library.

6. Run the Java application. Both the java class and the native library are loaded at run-
time and can be executed.

Interfacing Java with the Python interpreter (CPython) would needs much more work imple-
menting this software layer, e.g. to consider a meaningful handling for different data types.
This implementation alone would be a large project for itself. It is partly solved by several
projects presented in the following sections.

Coupling MATSim and UrbanSim __ 20/12/2010

10

	

Figure 4: Communication between CPython and the Java Virtual Machine via JNI.

2.2.2 JPype

The JPype project	 allows Python full access to Java class libraries. This is achieved through
interfacing the Python interpreter (CPython) and the JVM at the native level using JNI and
PNI6 (see Figure	 5) (JPype www pages (Accessed June 2010)). So the extra development ef-
fort to implement an own software layer like for JNI is no longer necessary. Two great ben-
efits of JPype are that it is available for prevalent platforms like Windows, Mac and Linux,
and it is convenient to employ. Figure	 6 and Figure	 7 illustrate a simple Python application
that prints a string message in Java. To do so, it is necessary to import JPype into a Python
module and to open and to close the connection to the JVM via “startJVM” and “shut-
downJVM”. In order to call the Java methods “printOut”, “setString” and “getString” of our
Java test class (see Figure	 7) it is necessary to set the class path where the desired Java
classes are stored. Then Python accesses the “test” Java package (via
“jpype.JPackage(’test’)”) in order to create an instance of the Java “Test” class.

However, some limitations should be considered using JPype, e.g. the type conversion while
translating between Python and Java. At this point two short examples regarding the limita-
tions of the type conversion are given. A detailed overview can be found in the JPype user
guide (JPype User Guide (Accessed June 2010)).

JPype converts a Python object like an “int” into the Java native types of byte, short or int if
the value fits. Since Java allows overloading a method (Python does not allow that), JPype is

6 Python Native Interface

Coupling MATSim and UrbanSim __ 20/12/2010

11

sometimes unable to decide which method to call. To convert a Python value explicitly,
JPype provides wrappers like JByte, JShort, JInt et cetera. But in result the developer is re-
sponsible to resolve those ambiguities.

Another example: The wrapper class “JArray” is used in Python to receive Java arrays, or to
pass them to Java methods. While creating such a wrapper object, the array type, the number
of dimensions and the actual number of elements in the array are needed. Again the developer
is accountable to provide the correct number of dimensions as well as the data type of the
JArray that should match the declared data type of the Java method. Effectively, this means
that the important convenience of resizeable arrays that has, in recent years, entered high
level programming languages, could not be used for Python–Java data interchange.

Those limitations should be kept in mind while creating even more complex objects.

Coupling MATSim and UrbanSim __ 20/12/2010

12

	

Figure 5: Java to Python integration. Adopted from Schreiber (2009).

	

Figure 6: Python application using Java via JPype.

	

Figure 7: Ordinary Java class with public methods.

Coupling MATSim and UrbanSim __ 20/12/2010

13

	

2.2.3 Other object-based integration methods

In this subsection we present four further methods to link Python and Java. These are JEPP,
Jython, Ja.Net and J#. These methods do not fit our constraints to integrate MATSim into
UrbanSim; for example, they support the wrong calling direction from Java to Python. They
are summarized for sake of completeness. The utility of these methods is discussed in the
following section.

JEPP is an acronym for Java Embedded Python. It embeds the CPython interpreter in Java via
JNI (see Figure 8) and allows Java to control Python applications, to evaluate Python state-
ments and to execute Python scripts. In contrast to JPype JEPP only allows Java to invoke
CPython. But that is the opposite calling direction of what we need since UrbanSim (in Py-
thon) starts MATSim (in Java). For more information about JEPP refer to the JEPP www
pages (Accessed June 2010).

	

Figure 8: JEPP embeds CPython via JNI in Java. Adopted from Schreiber (2009).

Jython (formally known as JPython) is another production-quality Python implementation
like CPython. Jython is a pure Java implementation of the Python interpreter. It consists of a

Coupling MATSim and UrbanSim __ 20/12/2010

14

Python compiler that compiles Python source code to Java byte code, which runs on a JVM
(see Figure 9). Jython allows to mix and match Python code and Java code, and to use Python
to script Java applications. Also, Python can be used from Java applications. Moreover Jython
can be used interactively like the Python command shell. Almost all modules of the standard
Python language, which are originally implemented in C, are part of Jython, except for the
standard modules to create user interfaces. Those must be written in Java or more precisely in
Swing7, AWT

 8or SWT9 (Jython www pages (Accessed June 2010); Pedroni and Rappin
(2002)).

Our intention while investigating Ja.Net and J# is to find out if they are applicable to couple
Python and Java via coupling the .NET runtime from Microsoft with the PNI. Ja.Net is an
open source project that implements the Java programming language for the .NET runtime
environment. J# was released by Microsoft as a transitional language for Java programmers to
introduce the .NET development environment. It can be also used to translate existing Java
applications to .NET even if their original source code is not available (MSDN www pages
(Accessed July 2010); Ja.NET www pages (Accessed June 2010)).

Figure 9: Jython is a pure Java implementation of the Python interpreter. Adopted from
Schreiber (2009).

7	 Swing is a toolkit to create a graphical user interfaces (GUI) in Java.	 	
8	 The Abstract Windowing Toolkit, or AWT, is the predecessor of Swing.
9	 In contrast to AWT and Swing the Standard Widget Toolkit uses native widgets to invoke platform specific
features to build user interfaces.

Coupling MATSim and UrbanSim __ 20/12/2010

15

3 Discussion
In this section the presented solutions from the previous section are discussed.

To recall our aims while integrating MATSim into UrbanSim the main requirements are
repeated here:

• Achieve a more robust integration of MATSim into UrbanSim.

• Achieve a more convenient and less error-prone configuration of MATSim and Ur-
banSim.

Since centralizing the configuration handling as explained above solves the latter point, our
focus in this section lies on the integration part.

The file-based approach combines many advantages. It provides a robust and reliable file-
based communication between UrbanSim and MATSim through data binding via PyXB and
JAXB and the validation via XSD. The concept of a file-based communication is easy to
understand, it is platform-independent and no additional programming languages are needed.
In contrast, object-based approaches suffer from an increased software complexity that im-
plies either an increased implementation and maintenance effort or at least a lower robust-
ness.

For example, the main handicap of JNI is to implement and maintain additional native meth-
ods that allow Java applications to call functions implemented in native applications and li-
braries. These native methods can be seen as an additional software layer. Since this software
layer is written in native code it must be adopted and at least re-compiled in order to run on
different platforms. This causes an increased effort while extending, improving and testing
the cooperation between UrbanSim and MATSim compared to the status quo. Furthermore in
order to implement the native methods an additional programming language besides Python
and Java is needed.

Reducing the implementation and maintenance effort is one of the goals of the JPype project.
Like the native methods in JNI, JPype can be considered as an additional software layer. Un-
like JNI it is more convenient to use and does not lead to an extra implementation and main-
tenance effort, e.g. it does not need be adapted to different platforms by the developer or user.
But due to the translation process on the native level between Python and Java the software
complexity still increases. In general an increasing software complexity leads to lower ro-

Coupling MATSim and UrbanSim __ 20/12/2010

16

bustness. Another disadvantage of JPype is the loose documentation that contains several
spelling mistakes.

The following methods are not applicable to integrate MATSim into UrbanSim. JEPP only al-
lows Java to invoke CPython. Unfortunately, that is the opposite calling direction. Jython
would be a very interesting way to couple Java and Python, but it lags behind CPython re-
garding processing speed and even more importantly it does not allow access to most Python
extensions like numpy or scipy. These extensions are extensively used in UrbanSim and are
only available for CPython. Using Ja.Net and J# to couple Python and Java through translat-
ing Java into .NET does not seem to be feasible. To name only two problems: First .NET is
designed for Windows. It is a moot question whether .NET applications run in a stable way
on Mac or Linux, e.g. with mono (see Mono www pages (Accessed June 2010)). It is also
questionable if MATSim can be translated without trouble with all its additional libraries into
.NET since J# is not supported any more.

Coupling MATSim and UrbanSim __ 20/12/2010

17

4 Conclusion
Regarding the presented object-based coupling methods JPype can be seen as the most useful
approach for our purposes. First of all it is applicable for prevalent platforms like Windows,
Mac and Linux. Compared with JNI it relieves the user from implementing native methods.
In addition, it is convenient to deploy. Since we plan to exchange only simple objects be-
tween UrbanSim and MATSim, limitations concerning different object types are negligible.
But the loose documentation could be a bottleneck in the implementation process, and the
large number of spelling mistakes on the website and the documentation makes JPype look
immature. JPype is a promising project, but regarding the status quo it cannot be
recommended as the standard way to couple UrbanSim and MATSim.

Therefore we believe that right now our file-based coupling method via data binding
(XSD/PyXB/JAXB) is the best way to foster a stable and reliable integration of MATSim into
UrbanSim.

Coupling MATSim and UrbanSim __ 20/12/2010

18

5 References
GenerateDS www pages (Accessed June 2010) generateds – generate data structures from

xml schema, http://www.rexx.com/~dkuhlman/generateDS.html.

Ja.NET www pages (Accessed June 2010) Ja.NET SE – Java 5 JDK for .NET,
http://www.janetdev.org/.

JAXB www pages (Accessed June 2010) Java Architecture for XML Binding
(JAXB),http://java.sun.com/.

JEPP www pages (Accessed June 2010) Jepp – java embedded python,
http://jepp.sourceforge.net/.

JPype User Guide (Accessed June 2010) JPype 0.4 – User Guide,
http://jpype.sourceforge.net/doc/user-guide/userguide.html.

JPype www pages (Accessed June 2010) JPype – Java to Python integration,
http://jpype.sourceforge.net/.

Jython www pages (Accessed June 2010) The Jython Project, http://www.jython.org/.

Liang, S. (1999) The Java Native Interface. Programmer’s Guide and Specification, first
printing, ADDISON-WESLEY, June 1999.

MATSIM www pages (Accessed March 2010) Multi Agent Transport SIMulation,
http://matsim.org/.

Mono www pages (Accessed June 2010) Cross platform, open source .net development
framework, http://www.mono-project.com/.

MSDN www pages (Accessed July 2010) Microsoft Development Network,
http://msdn.microsoft.com/.

Pedroni, S. and N. Rappin (2002) Jython Essentials, first edition, O’REILLY, March 2002.

PyXB www pages (Accessed June 2010) PyXB: Python XML Schema Bindings,
http://pyxb.sourceforge.net/.

Schreiber, A. (2009) Mixing Python and Java. How Python and Java can communicate and
work together, http://elib.dlr.de/, June 2009.

UrbanSim Manual (2009) UrbanSim Manual, Center for Urban Simulation and Policy
Analysis University of Washington, University of Washington, UrbanSim Version 4.2,
2009.

van der Vlist, E. (2002) XML Schema, first edition, O’REILLY, June 2002.

World Wilde Web Consortium www pages (Accessed June 2010) World Wilde Web
Consortium, http://www.w3.org/.

