Working Paper 2.6

# Descriptive and Geographical Data for European Cities

Alain PHOLO BALA

Université Catholique de Louvain, Belgium FP7-244557



Revision: 1 24/06/2010





Funded under Socio-economic Sciences & Humanities

## Contents

| 1 | Intro                                                   | oduction3                                                               |                                                               |    |  |
|---|---------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------|----|--|
| 2 | Geographical Differences Between US and European Cities |                                                                         |                                                               |    |  |
|   | 2.1                                                     | Density and Compactness                                                 |                                                               |    |  |
|   | 2.2                                                     | Concentr                                                                | ric cities                                                    | 7  |  |
|   | 2.3                                                     | Social geography                                                        |                                                               |    |  |
| 3 | Limit                                                   | s of Urba                                                               | n agglomerations                                              | 14 |  |
|   | 3.1                                                     | USA                                                                     |                                                               | 15 |  |
|   | 3.2                                                     | France                                                                  |                                                               |    |  |
|   | 3.3                                                     | Switzerla                                                               | and                                                           | 18 |  |
|   | 3.4                                                     | Belgium                                                                 |                                                               | 19 |  |
|   | 3.5                                                     | Compari                                                                 | ng Agglomeration Definitions: An Increased Focus on Commuting | 20 |  |
| 4 | UrbanSim and data structures                            |                                                                         |                                                               |    |  |
|   | 4.1                                                     | Geograp                                                                 | hic Units of Analysis in UrbanSim Models                      | 23 |  |
|   |                                                         | 4.1.1                                                                   | Grid Cells                                                    | 23 |  |
|   |                                                         | 4.1.2                                                                   | Parcels                                                       | 24 |  |
|   |                                                         | 4.1.3                                                                   | Zones                                                         | 25 |  |
|   | 4.2                                                     | Impact of the Choice of Basic Spatial Unit on UrbanSim Model Components |                                                               |    |  |
|   | 4.3                                                     | Data Requirement for UrbanSim Applications.                             |                                                               |    |  |
|   |                                                         | 4.3.1                                                                   | General Tables Used in UrbanSim                               | 29 |  |
|   |                                                         | 4.3.2                                                                   | Data for Grid Cells Based Applications.                       | 35 |  |
|   |                                                         | 4.3.3                                                                   | Data for Parcels Based Applications.                          | 41 |  |
|   |                                                         | 4.3.4                                                                   | Data for Zone Based Applications.                             | 48 |  |
| 5 | Avail                                                   | able Data                                                               | a                                                             | 50 |  |
| 6 | Refe                                                    | rences                                                                  |                                                               | 51 |  |
| 7 | Appendix                                                |                                                                         |                                                               |    |  |
|   | 7.1 Available data for Brussels case study              |                                                                         |                                                               | 53 |  |
|   | 7.2                                                     | Available                                                               | e data for Zurich case study                                  | 66 |  |
|   | 7.3                                                     | Available                                                               | e data for Paris case study                                   | 68 |  |

## **Descriptive and Geographical Data for European Cities**

Alain PHOLO BALA Université Catholique de Louvain, Location Voie du Roman Pays, 34 1348 Louvain-la-Neuve

Teleph.:+32 10 47 4352 Telefax: +32 10 47 4301 Alain.Pholobala@uclouvain.be

24/06/2010

## Abstract

UrbanSim is a software-based simulation system designed to support planning and analysis of urban development. Applied to several US metropolitan areas, it has proved to be a very powerful and efficient tool in this context. Nevertheless, recent UrbanSim applications in Europe outline the necessity to adapt the available modelling platform and to develop new tools consistent with the characteristics of European cities. The project Sustaincity (www.sustaincity.eu) will develop such tools, based on the UrbanSim modelling platform.

European cities display strong contrasts with respect to US agglomerations. Firstly, they are denser and more compact than Anglo-american cities. Secondly, they are concentric, while in US agglomerations have developed according to grid plans. Finally, they show up a different social geography. The latest UrbanSim version (version 4.2.2) enables parcel based applications that are more suitable for European cities. Those parcel based applications have data re-

#### Keywords

UrbanSim; European cities; US agglomerations, Parcels, Grid Cells, Data

#### **Preferred citation style**

Pholo Bala, A. (2010) Descriptive and Geographical Data for European Cities, *SustainCity Working Paper*, **2.6**, Université Catholique de Louvain, Belgium.

## **1** Introduction

UrbanSim is a software-based simulation system designed to support planning and analysis of urban development. It accounts for the interactions between land use, transportation, the economy, and the environment. It primarily intended for use by Metropolitan Planning Organizations (MPOs), cities, counties, non-governmental organizations, researchers and students interested in exploring the effects of infrastructure and policy choices on community outcomes such as motorized and non-motorized accessibility, housing affordability, greenhouse gas emissions, and the protection of open space and environmentally sensitive habitats.

Metropolitan areas have come under intense pressure to respond to mandates to link planning of land use, transportation, and environmental quality; and from citizen concerns about managing the side effects of growth such as sprawl, congestion, housing affordability, and loss of open space. The planning models used by Metropolitan Planning Organizations were generally not designed to address these questions, creating a gap in the ability of planners to systematically assess these issues. UrbanSim has been developed to address these emerging requirements (Waddell, 2002). It has been applied to several US metropolitan areas and has proved to be a very powerful and efficient tool in this context (Waddell *et al*, 2007, Waddell and Borning, 2004). However, recent UrbanSim applications in Europe outline the necessity to adapt the available modelling platform and to develop new tools consistent with the historical, political and social characteristics of European cities.

In this report, we identify the differences between the geographical features of US and European cities and we further show up the distinctions between the descriptive and geographical data required to properly model US and European agglomerations.

In the next section, we describe the geographical differences between US and European agglomerations. Then, in a third section we identify the required and available data to model European cities.

## 2 Geographical Differences Between US and European Cities

Uncovering distinctive features between US and European cities may lead to understate differences between European cities. European cities differ by their administrative meshing and their urban design. Moreover, there are significant differences across Europe in terms of building and population densities. Those differences may have been triggered by the fact that Europe has experienced different waves of urbanization at different stages of history and techniques evolution. However, careful inspection of existing definitions and statistics as well as observations on European urban agglomerations seem to outline a number of points that render European cities distinct from other cities of the World, especially North American cities (Le Gléau *et al.*, 1996; Kaplan *et al.*, 2004). European cities are denser and more compact than North American agglomerations. Moreover, they are concentric while Anglo-American cities feature a grid plan. Finally, European and North American cities have contrasting social geography.

#### 2.1 Density and Compactness

European cities are more compact than their North American counterparts. For a comparable population they occupy less total area than American cities. Most of their residents are apartment dwellers. Residential streets of old sections tend to be narrow, and front, side, or rear yards or gardens are scarce (Fellman *et al.*, 2003).

European cities were initially designed for pedestrians and they have the dimension appropriate with walking distances; most of them initially established as "walking cities" (Kaplan *et al.*, 2004; Allain, 2004). Those "walking cities" currently correspond to the central parts of European agglomerations characterized by the highest density of built-up areas (Allain, 2004).

Despite that the evolution of transportation technology allowed to achieve tremendous urban growth, it has not jeopardized this design. Rather, it seems to have ensured its persistence. Compactness, high densities have favored the development of public transportation, including well developed subway systems which allowed cities centers to keep their prominence. Indeed, the expansion of automobile ownership and the construction of highways are not as pervasive as in US. Therefore, it has not eased the development of extensive periurban areas and European cities mark a strong contrast with the sprawl of American Suburban Areas. Indeed, residence and work are closer in Europe, often within walking and bicycling distance. Most sections of cities have first floor retail and business establishments below upper-story apartments, bringing shopping and employment places within convenient distance of residences (Fellman *et al.*, 2003).

Being more compact, European cities have a higher urban density as Table 1 clearly shows.

| City       | Country        | Density per Acre |
|------------|----------------|------------------|
| Bucharest  | Romania        | 669              |
| Tiranë     | Albania        | 489              |
| Sofia      | Bulgaria       | 403              |
| Amsterdam  | Netherlands    | 375              |
| Budapest   | Hungary        | 304              |
| Prague     | Czech Republic | 274              |
| Warsaw     | Poland         | 274              |
| Paris      | France         | 269              |
| Chişinău   | Moldova        | 259              |
| Ljubljana  | Slovenia       | 252              |
| Marseille  | France         | 242              |
| Belgrade   | Serbia         | 237              |
| Athens     | Greece         | 235              |
| Toronto    | Canada         | 227              |
| Talinn     | Estonia        | 180              |
| New York   | U.S.           | 178              |
| Bratislava | Slovakia       | 175              |
| Cardiff    | U.K.           | 133              |
| Stockholm  | Sweden         | 59               |
| Seattle    | U.S.           | 47               |
| Atlanta    | U.S.           | 22               |

 Table 1
 Urban Residential Density per Acre

Source: World Resources 1998-99: *A Guide to the Global Environment*. New York: Oxford University Press quoted by Kaplan *et al.* (2004)

Three basic factors may explain this compactness (Kaplan et al., 2004):

The costs of private transportation are much higher in Europe than in United States.
 Therefore, European city dwellers cannot spread out as far as American urbanites. As Ta-

ble 2 shows gasoline prices are very high comparatively to United States. Furthermore, because costs and congestion make long commute less advantageous, European countries are less inclined to build new roads or even to expand the carrying capacity of existing roads. European urbanites rely mostly on mass transportation (table 3) and that is far more extensive and cheaper than United States thanks to more important government subsidies;

| Table 2                                                                             | Average Gas Prices |  |
|-------------------------------------------------------------------------------------|--------------------|--|
| Country                                                                             | Price per Gallon   |  |
| U.K.                                                                                | \$5.23             |  |
| Finland                                                                             | \$5.03             |  |
| France                                                                              | \$4.58             |  |
| Belgium                                                                             | \$4.48             |  |
| Germany                                                                             | \$4.21             |  |
| Austria                                                                             | \$3.87             |  |
| Ireland                                                                             | \$3.84             |  |
| Switzerland                                                                         | \$3.48             |  |
| Spain                                                                               | \$3.36             |  |
| U.S.                                                                                | \$1.74             |  |
| Source: Akron Beacon Journal, September 8, 20 quoted by Kaplan <i>et al.</i> (2004) |                    |  |

- The second factor explaining compactness of urban cities is the higher costs of home ownership and home financing. Housing prices are generally higher in Europe as a result of greater rarity and because European builders use sturdier materials. In Europe the cost of financing a house is higher since most Europeans do not enjoy the 30-year, tax deductible, and amortized mortgage available to Americans. Higher costs of home ownership and financing have led to lower homeownership rates in Europe;
- The third factor explaining high densities in European cities is that planning is much more rigorous in Europe. European states benefit from a variety of growth control mechanisms intended to contain urban population within existing built-up areas. Across Europe, policy makers have sought to concentrate urban growth in existing centers or in a selected number of growing cities.

| City             | Country        | Work Trips by<br>Transit | Cars per<br>1000 People |
|------------------|----------------|--------------------------|-------------------------|
| Belgrade         | Serbia         | 64                       | 30                      |
| Chișinău         | Moldova        | 48                       | 60                      |
| Nizhniy Novgorod | Russia         | 78                       | 69                      |
| Riga             | Latvia         | 57                       | 104                     |
| Moscow           | Russia         | 85                       | 138                     |
| Zagreb           | Croatia        | 52                       | 215                     |
| Vilnius          | Lithuania      | 49                       | 215                     |
| Copenhagen       | Denmark        | 27                       | 223                     |
| New York         | U.S.           | 51                       | 232                     |
| Bratislava       | Slovakia       | 72                       | 282                     |
| Budapest         | Hungary        | 66                       | 288                     |
| Sofia            | Bulgaria       | 75                       | 310                     |
| Cardiff          | U.K.           | 13                       | 350                     |
| Athens           | Greece         | 34                       | 354                     |
| Stockholm        | Sweden         | 37                       | 390                     |
| Liepzig          | Germany        | 33                       | 396                     |
| Paris            | France         | 40                       | 426                     |
| Toronto          | Canada         | 30                       | 430                     |
| Atlanta          | U.S.           | 20                       | 473                     |
| Prague           | Czech Republic | 67                       | 500                     |
| Seattle          | U.S.           | 16                       | 654                     |

Table 3Mass Transit and Car Ownership

### 2.2 Concentric cities

Most of European cities are characterized by their concentric development (Le Gléau *et al.*, 1996). Indeed, the typical urban entity in Europe includes an urban core, old and very dense. This urban core is surrounded by a concentric outer area showing up continuity of built-up area. In turn this outer area is surrounded by far less dense peripheral areas.

Urban centers of European cities are generally of great historical and cultural value. It hosts historic buildings and are therefore often the preferred attraction for tourists.<sup>1</sup> While the urban core lies often in the oldest section of the city, it still functions as the nerve center of even its most modern parts. Hosting the administrative, the financial (major banks and brokerage houses), and the most important retail functions, European cores act as the central place that seems to have vanished in North American agglomerations. Figure 1 shows the example of a concentric urban development illustrated by the plan of the city of Milan.



Figure 1 An example of concentric plan: Milan

Source: Beaujeu-Garnier (1995), p. 67.

While the concentric model (Figure 2(a)) is still somewhat pertinent the describe development of European cities, it has become less relevant to characterize metropolitan areas in US.

<sup>&</sup>lt;sup>1</sup> The epicenter of most of European cities lies in the oldest section of the city. This is termed the historical core and is often surrounded by the ancient or Medieval walls (Kaplan et. al, 2004). It hosts several cultural amenities like ancient churches, townhalls etc.



#### Figure 2 Three classic models of the internal structure of cities.<sup>2</sup>

Source: Fellman et al. (2003), p. 419

Deprived of a long urban tradition, contrary to Europe, United States experienced the emergence of new metropolitan land use and functional patterns that could no longer be satisfactorily explained by the classic ring, sector, or multiple-nuclei models. Urban development in US is characterized by increasing sprawl. No longer dependent on the central city, the suburbs were reborn as vast, collectively self-sufficient outer cities. Indeed, many, perhaps most, suburbanites have no connection with the core city, feels no ties to it and satisfy almost all their needs within the peripheral zone. New suburbs began to outperform older central districts in size and even as generators of employment and income. So, they have outgrown their former role as bedroom communities and have emerged as chain of

<sup>&</sup>lt;sup>2</sup> The concentric zone model considers a metropolitan area as a set of nest rings. It acknowledges four concentric circles of mostly residential diversity at increasing distances in all directions from the wholesaling, warehousing, and light industry border of the high-density CBD core:

A zone in transition marked by the deterioration of old residential structures abandoned, as the city expanded, by the former wealthier occupants and now containing high-density, low-income slums, rooming houses and probably ethnic ghettos;

A zone of "independent working people's homes" occupied by industrial workers, perhaps secondgeneration Americans able to afford modest but more ancient homes on small lots;

A zone of better residences, single family homes, or high-rent apartments occupied by those wealthy enough to exercise choice in housing location and to afford the longer, more costly journey to CBD employment;

A commuters' zone of low-density, isolated residential suburbs, just beginning to emerge when this model was proposed (Fellman *et al.*, 2003).

independent, multinucleated urban developments. Qualified as "edge cities",<sup>3</sup> those outer cities now exist in all regions of urbanized Anglo America. The declining influence of Central Business District in US metropolitan areas is consistent with the dominance of grid plans in US urban agglomerations. In such plans, streets run at right angles to each other, forming a grid. With grid plans the urban fabric is neutral without any hierarchy and congruence to site topography. Figure 3 shows the example of the grid plan of the city of San Francisco.



Figure 3 San Francisco: A grid plan at the West of the bay

Source: Beaujeu-Garnier (1995), p. 66.

<sup>&</sup>lt;sup>3</sup> Garreau established five rules for a place to be considered an edge city:

It must have more than five million square feet (465,000 m<sup>2</sup>) of office space. This is enough to house between 20,000 and 50,000 office workers, as many as some traditional downtowns.

It must have more than 600,000 square feet (56,000 m<sup>2</sup>) of retail space, the size of a medium shopping mall.
 This ensures that the edge city is a center of recreation and commerce as well as office work.

<sup>-</sup> It must be characterized by more jobs than bedrooms.

<sup>-</sup> It must be perceived by the population as one place.

<sup>-</sup> It must have had no urban characteristics 30 years earlier.

http://en.wikipedia.org/wiki/Edge\_city visited the 4/05/2010.

#### 2.3 Social geography

Europe shares with United States the common feature that older structures are located at the center of the city. However, unlike United States where the richest people prefer newer, more spacious peripheral housing, in Europe wealthy people are likely to live and stay in the historical core, while many of the poor are found in the city's outskirts<sup>4</sup>. This trend is reinforced by the greater tradition of providing public housing. In most European countries provision of such housing is far more comprehensive than in United States. Much of this housing is located near the city's edge, where land is available. Paris, for instance, is surrounded by a series of lower status apartment complexes where are located many of the city's poor as well as several immigrant populations. Therefore, rather than facing inner-city blight like most of Anglo-American agglomerations, Paris suffers from a crisis of suburbs in which public housing is linked in the public mind with social deprivation and minority overrepresentation (Kaplan *et al.*, 2004; Paulet, 2000).<sup>5</sup>

Figure 4 presents a schematic of a Western European city. While it cannot account for all the differences among Western European cities, it illustrates some of the features just discussed, in particular the persisting attractiveness of its historical core. The urban core includes a large number of affluent people. Social housing is found along the edge of the city, close to industrial areas. Suburbanization of some of the more affluent people is also evidenced.

<sup>&</sup>lt;sup>4</sup> Brueckner *et al.* (1999), provide an appealing explanation of this contrast by proposing an amenity-based theory of location by income. They explain the relative location of different income groups by the spatial pattern of amenities in a city. When the center has a strong amenity advantage over the suburbs, as in European cities, the rich are likely to live at central locations. When the center's amenity advantage is weak or negative (the case of US agglomerations), the rich are likely to live in the suburbs.

<sup>&</sup>lt;sup>5</sup> Another major point of divergence generally outlined between Europe and North America is that, in Europe, ethnic segregation did not emerge as a major dimension of urban morphology. This conclusion refers to studies that were done several decades ago. However, in the meantime cultural diversity and ethnic segregation have become more prominent (Kaplan, 2004).



Figure 4 A diagrammatic representation of the West European city.

Source: Fellman (2003), p. 433.

As Figure 5 shows, things are rather different in US metropolitan areas. Sectors of highincome residential use expand beyond the central city limits, usurping the most desirable suburban areas and segregating them by price and zoning restrictions. Middle, lower-middle, and lower income groups found their own income-segregated portions of the fringe. Ethnic minorities are frequently relegated to the inner city and to some older industrial suburbs.

To summarize, European cities display strong contrasts with respect to US agglomerations. Firstly, they are denser and more compact than Anglo-american cities. Secondly, they are concentric, while in US agglomerations have developed according to grid plans. Finally, they exhibit contrasting social geography: while in European cities rich people seem to be attracted by the strong amenity advantage of historic urban cores, US agglomerations experience inner city blight and the relegation of low income group and ethnic minorities in the CBD. Such differences may entail contrasting definitions of urban agglomeration in Europe and in US



## Figure 5 San Francisco: A grid plan at the West of the bay

Source: Fellman (2003), p. 424.

## 3 Limits of Urban agglomerations

The delineation of agglomerations is an old issue. Since the 19<sup>th</sup> century statisticians, economists, geographers and civil servants have realized the importance of space delineation. Several kinds of agglomeration definition have been provided. Among them, we may distinguish firstly analytical and functional definitions that consider agglomerations as an area to analyze regarding a specific function of interest. Secondly, there are morphological definitions based essentially on the continuity of built-up area criterion. Thirdly, there are political and administrative delineation of agglomerations that reduce the scope of agglomerations to fixed boundaries. The last definition of urban agglomerations has raised concerns. Indeed, it has been argued that administrative borders do not capture the essence of economic phenomena that often spill over boundaries. The shortcomings of the administrative delimitation of agglomeration agglomeration of agglomeration agglomeration agglomeration agglomeration have been the main incentive to the creation of geographical units based either on morphological or functional criteria.

As urbanization is a very complex phenomenon, agglomeration definition and delineation may differ with respect to the goal pursued: transport management, infrastructure design, urbanism specifications, tax receipts collection and allocation (Dujardin *et al.*, 2007). Therefore, there is not any best or optimal criterion. The choice of the proper criterion depends on the objective.

The goal of the Sustain-city project is to advance the state-of-the-art in the field of microsimulation of prospective integrated models of Land-Use and Transport (LUTI). For such a project a consistent agglomeration definition should be a functional region capturing its economic influence.

The "Core Based Statistical Area" nomenclature proposed by the US Office of Management and Budget is clearly a functional definition. It is consistent with US multinucleated urban developments marked the expansion of suburbs and edge cities and the regression of former CBD.

In Europe, where historical urban cores are still dominant, nomenclatures have put more emphasis on morphological criteria.

14

#### 3.1 USA

The Office of Management and Budget has published an updated nomenclature of US metropolitan areas in December 2000 (Federal Register, 2000). This nomenclature is based on the concept of **Core Based Statistical Area** (**CBSA**). A **CBSA** is a statistical geographic entity consisting of counties associated with at least one **Core** (**Central counties**), plus adjacent counties having a high degree of social and economic integration with the **Core** (**Outlying counties**). Counties are qualified as central if they have at least 50 percent of their population in urban areas of at least 10,000 population, or if they have within their boundaries a population of at least 5,000 located in a single urban area of at least 10,000 population. The degree of interaction between central and outlying counties is measured through commuting ties. Indeed, an outlying county meets the following requirements: at least 25 percent of the employed residents of the county work in the central counties of the CBSA or at least 25 percent of the CBSA.

A **Core** is a densely settled concentration of population, comprising either an **urbanized area** (of 50,000 or more population) or an **urban cluster** (of 10,000 to 49,999 population).

There are two categories of CBSA: Metropolitan and Micropolitan Statistical Areas. They differ by the size of their Core. The Core of a Metropolitan Statistical Area is an **urbanized area** populated by at least 50,000 inhabitants, whereas for a Micropolitan Statistical Area it is an urban cluster having a population of at least 10,000 but less than 50,000.

The **urbanized area** designates a continuously built-up landscape defined by building and population densities with no reference to political boundaries. It may be considered as the **morphological agglomeration** (or the **physical city** according to Fellman *et al.*, 2003) and may include a central city and many contiguous cities, towns, suburbs, and other urban tracts.

On the other hand, a **Metropolitan Statistical Area** refers to a large scale functional entity, perhaps including many urbanized areas, discontinuously built-up but nonetheless operating as well integrated economic whole. Figure 6 shows these areas in a hypothetical American county.





Source: Fellman et al. (2003), p. 405.

#### 3.2 France

A functional definition has also been proposed by the French National Statistics Institute (INSEE). In 1997, INSEE has defined a new spatial nomenclature of French territory, the "Urban Areas" zoning in order to capture cities' influence beyond administrative borders. Regularly updated during the subsequent census, this zoning is based on two nested spatial entities: the urban unit and the urban area.

Urban units are the basic spatial units. It is defined as a set of administrative districts whose territory hosts a built area with at least 2000 inhabitants. Within an urban unit, the maximal distance allowed between buildings is 200 meters. Whenever an urban unit reaches the threshold of 5000 jobs, it is qualified as urban pole if it does not depend of a bigger urban pole i.e. if less than 40 % of the workers residing in that urban unit work in that huger urban pole.

An urban area is a set of contiguous administrative districts without any enclave. It is composed by an urban pole, and a periurban ring constituted by rural administrative districts or urban units where at least 40% of the dwellers work in the urban pole or in the administrative districts closely connected to it. The INSEE 2009 "Urban Areas" nomenclature counts 354 urban areas in Mainland France.

INSEE has proposed another interesting nomenclature, the "Employment Area" zoning. The purpose of this zoning is to analyze the working of the French labor market and commuting. An Employment Area is a geographical space where most of the workers reside and work<sup>6</sup>. Therefore, the characteristic of "Employment Area" delineation is clearly to minimize daily cross-boundary commuting, or equivalently to maximize the coincidence between residential and working areas (Briant et al., 2009). According to the INSEE 2008 zoning, there were 348 Mainland Employment Area.





<sup>&</sup>lt;sup>6</sup> <u>http://www.insee.fr/fr/methodes/default.asp?page=definitions/zone-emploi.htm</u> visited the 9/03/2010.

#### 3.3 Switzerland

The Swiss Federal Statistical Office defined in 1980 a new formula of agglomeration delineation putting more emphasis on functional criteria than on morphologic ones. According to this new nomenclature, the **urban area** is composed of, on one hand, agglomerations, and, on the other hand, **isolated cities**.

An **agglomeration** is defined as a set of adjacent administrative districts having at least 20,000 inhabitants. It is composed of a **central area**, and of **outlying administrative districts** fulfilling the following criteria:

- At least a sixth of the workers residing in those administrative districts work in the central area;
- at least 3 of the 5 following criteria: continuity of the built-up area, a combined inhabitants/workers density higher than 10 by hectare, population growth rate exceeding the national average by more than 10% during the last ten years, not less than a third of the workers residing in those administrative districts work in the central area; the share of dwellers working in the primary sector should not exceed twice the national average.

The central area of an agglomeration includes a **core administrative district** and possibly some other administrative districts that fulfill the following conditions: they have at least 2,000 jobs, the ratio of the number of persons working within their boundaries with the number of workers actually residing in those administrative districts must be greater or equal to 0.85 and the following condition: they should form a continuity of built-up area with the core administrative district or share a border with it, or have at least a sixth the workers residing in those administrative district.

An isolated city is defined as an administrative district with at least 10,000 inhabitants.

## 3.4 Belgium

In Belgium, the "Direction générale Statistique et Information économique"<sup>7</sup> has published in 2009 a spatial nomenclature of Belgian urban regions based on the data of the Social and Economic Survey of 2001 (Van Hecke *et al.*, 2009). This nomenclature is merely an update of the definition of Belgian urban regions published by the Belgian National Statistics Institute in 1979. This definition has been previously updated twice; respectively on the basis of 1981 and 1991 data (Van der Haegen *et al.*, 1996). This nomenclature defines several spatial units strongly nested and uses both morphological and functional criteria.

According to this nomenclature the **urban core** is the center of decisions and of activities that displays the highest concentration of retail trade and services. It is surrounded by densely built urban districts and forms with those surroundings the **city-centre**.

An **urban ring** composed essentially of XXth century buildings encircles the **city-centre**. It is a continuous built-up area that is less dense than the city center. The **urban ring** and the **city-centre** form altogether the **morphological agglomeration** whose boundaries are determined by the continuity of built-up area rather than by the administrative borders. By adjusting the morphological agglomeration to administrative boundaries, we get the **agglomeration** (or **operational agglomeration**).

The **suburb** is the outer area beyond the **agglomeration**. Morphologically, it may appear as a rural area, but from a functional view point, it is urban.

The agglomeration and the suburb constitute the **urban region**. It is the enlarged entity where most of the activities undertaken by the urban community take place. Therefore the urban region describes a functional area turned towards the city-centre.

Beyond the urban region, there is the **residential commuting area**. This area depends heavily on the urban region for jobs and forms with the urban region the **residential urban complex**.

<sup>&</sup>lt;sup>7</sup> It proposes the following English translation of its own designation: Directorate-general Statistics and Economic information. This translation does not seem, however, to be very usual.



Source: Van Hecke et al. (2009), p.108.

## 3.5 Comparing Agglomeration Definitions: An Increased Focus on Commuting

All the aforementioned nomenclatures use several indicators that we may classify according to the following typology:

- Morphological indicators: continuity of the built-up area, housing structure, density or level of population as a land use proxy;
- Functional indicators: median income, employment density, employment threshold, presence of business and services, growth of the population or of the built area; incommuting and out-commuting;
- Structural indicators: share of the primary sector.

All the definitions given by those nomenclatures perceive urban agglomerations as concentric spatial entities: an agglomeration is roughly defined as an urban core surrounded by an outlying area.

However, the aforementioned indicators have not the same weight in the definition of the inner and outer parts of the agglomeration. Morphological indicators play a more important role in the definition of the urban core, while functional indicators are more relevant for the outlying area.

However, we may distinguish three kinds of definition by the way the outlying area is defined:

- The Swiss delineation retains a mix of functional and morphological criteria to define the outlying administrative districts;
- The Belgian nomenclature retains a mix of functional criteria to delimit the suburb and the commuting criteria to delineate the residential commuting area;
- The US and the French definitions delineate the outlying areas using commuting criteria only.

We can denote that the emphasis on commuting criteria is rising from the Swiss to the US and French definitions<sup>8</sup>, while the accent on morphological criteria is decreasing.

Therefore, at the two extreme, there is two different definitions of urban agglomeration: on one hand a definition based on the postulate that an agglomeration is multidimensional phenomenon characterized both by morphological criteria (continuity of the built-up area), and functional features (commuting), and on another hand a functional definition attempting to capture the influence an urban core may have on its catchment area.

Defining an urban entity is a difficult task, because cities and towns can receive a variety of social meanings. Moreover, there is no universal threshold of population density that can be associated to the definition of a city for differentiating urban from rural settlements (Pumain, 2003).

<sup>&</sup>lt;sup>8</sup> If we consider that the Swiss definition has evolved by raising its emphasis on commuting, we realize the increasing importance of this factor on agglomeration definition.

As stated previously, urbanization is very complex. Agglomeration delimitation differs with respect to the goal pursued. For instance, the aim of the Standards for defining Metropolitan and Micropolitan Statistical Areas is to provide nationally consistent definitions for collecting, tabulating, and publishing Federal statistics for a set of geographic areas. To this end, Metropolitan Areas were designed as statistical representation of the social and economic linkages between urban cores and outlying, integrated areas. The Office of Management and Budget warns clearly that Core Based Statistical Areas (CBSAs) "should not serve as a general purpose geographic framework for nonstatistical activities and may or may not be suitable for use in program funding formulas" (Federal Register, 2000).

The delineation of the outlying area of such functional regions should discard morphological criteria since they do not capture the enlarged range of spatial interaction allowed by the modernization of transport technology (Pumain, 2003). Taking this argument into account, Kammermann (2007), propose to review the current Swiss definition of agglomeration and to replace by a concept perceiving agglomeration as a network.

## 4 UrbanSim and data structures

There are substantial differences between the features of European and US agglomerations: European cities are denser, more compact than US cities, they show up a concentric design, while most of Anglo-American cities developed according to Grid plans, and they display contrasting social geography. This should have an impact on the choice of geographical units that are the most appropriate to model European cities.

#### 4.1 Geographic Units of Analysis in UrbanSim Models

UrbanSim and the data structures used in it have evolved in the recent years. Until 2005, most UrbanSim applications were based on a widespread use of grid overlaid on study areas. The numerous shortcomings of the grid cell approach led to the recent adoption of a parcel-based data and spatial structure. Referring to UrbanSim User guide and reference manual (Center for Urban Simulation and Policy Analysis, 2009, chapters 17-21), we describe the fundamental differences between these data structures. While both are still used and supported approaches, the advantages of the parcel approach appear as fairly significant. UrbanSim currently supports three data structures: grid cells, parcels, and zones.

#### 4.1.1 Grid Cells

The decision about the resolution to use for a grid to overlay the study area is crucial to implement the grid cell-based approach to developing the data for UrbanSim. The choice of 150 meters by 150 meters was made in early UrbanSim applications, mainly as a compromise between the high level of resolution desired, and the increased computational demands made by higher resolution data.

The principal advantage of using a grid is that it renders possible the use of efficient raster processing as in image processing or raster GIS spatial analysis. For instance, it is possible to compute effectively how much population or employment is within a fixed radius of each cell. Such a computational efficiency was the most important motivation for using the grid cell approach to structuring the input data for UrbanSim.

Each grid cell contains approximately 5.5 acres, at a resolution of 150 meters. In order to prepare the data for UrbanSim, parcel maps are overlaid in the GIS on a vector representation of grid cells, and the contents of the parcel (housing, etc) allocated to the grid cells proportionally to its land area falling within each grid cell. The fragments of the real estate components created in this way are aggregated into a composite at the cell level. UrbanSim then operates on the grid cell-level data. To better reflect the contents of the grid cells, which are clearly heterogeneous in their composition, building objects were created to allow at least different types of real estate in a cell to be represented by different types of buildings. Households and jobs were then associated with buildings, and buildings with grid cells.

However, the grid cell based approach presents several shortcomings. Grid cells bisect parcels; therefore, it is not possible to aggregate parcel information neatly into grid cells. This is an evident outcome of imposing a completely regular shape on a polygonal layer of parcels that vary in size or in shape. Hence, since this approach implies unnaturally splitting the underlying parcel information, recombining it may create artificial representations of the data. Consequently, with this approach applying information on development regulations from general plans is more involved since those are also based on polygons, and apply to parcels.

#### 4.1.2 Parcels

Recent development on UrbanSim has adopted a data structure based on parcels to address some of the limitations of the grid cell-based data structure. The parcel-based UrbanSim application uses a data model that reflects parcels, buildings, households and jobs as the primary objects and units of analysis. Households and jobs choose locations by selecting a specific building, which is associated with a specific parcel. Real estate development is underpinned on development projects occurring on specific parcels.

Parcels data structure appears more suitable to European cities. Indeed, conversely to the US agglomerations that develop according to a grid plan, Europeans are characterized by a concentric and more complex data structure. The shape of the basic geographical units in

Europe cities result is irregular. They are better described by polygons of various size and patterns than uniform grid cells.



Figure 9 Grid cells and Parcels in UrbanSim.

Source: Waddell (2002).

#### 4.1.3 Zones

Zones constitute alternative data structures that can be substituted for parcel or grid cell based data. The zone based data approach may allow creating a simple model using less geographical detail. The zone based data approach use the same data structure for households, jobs and buildings. The unique change it requires is to assign locations to buildings at a coarser level of detail. Such an approach would keep all the accounting systems in the UrbanSim model: households and jobs are still located in buildings, and buildings can be linked spatially to zones (figure 10). However, it would let aside considerable detail for analyzing development locations and capacity constraints due to zoning or land use plans.



## 4.2 Impact of the Choice of Basic Spatial Unit on UrbanSim Model Components.<sup>9</sup>

The current version of UrbanSim supports three types of database:

- baseyear database: defines the initial state of a simulation in a particular base year.
- scenario database: defines changes to a baseyear (or another scenario) database.
- output database: optional repository for simulation results.

It also supports several database servers: MySQL (which is the most used and tested version), Postgres, SQLite, Microsoft SQL.

Figure 11 describes the overall architecture of UrbanSim model system. The overall logic is essentially the same either for grid cells or parcels based data structures. The only thing that differs is the configuration of particular models.<sup>10</sup> Table 4 summarizes the specifications of models used in the parcel version of UrbanSim. They differ significantly from earlier grid cells versions. For instance, in addition to the substitution of parcels for grid cells as the basic spatial unit, the real estate development model was completely restructured in order to take advantage of the availability of parcel geography in representing actual development projects

<sup>&</sup>lt;sup>9</sup> More details on the models that compose UrbanSim may be found in Center for Urban Simulation and Policy Analysis (2009).

<sup>&</sup>lt;sup>10</sup> More details on the UrbanSim model components may be found on Center for Urban Simulation and Policy Analysis (2009).

- which do vary in size and shape in the real world, in ways that were hardly compatible with grid cell geography.

Moreover, the parcel based model specifications also have recently added models to predict the choice of workers to be home-based (normally work from home), and a workplace choice model for workers who are not home-based. This permits a proper handling of the prediction of commuting behavior as a long-term outcome of where a household chooses to live, and where the workers in the household have jobs, and allows the removal of the home-basedwork trip distribution model from the set of behaviors predicted by the travel model on a daily basis.

| 1 | <br>components comp i areer Bata Stracture |  |
|---|--------------------------------------------|--|
|   |                                            |  |

| Model                                        | lel Agent                              |                                                 | Functional Form              |
|----------------------------------------------|----------------------------------------|-------------------------------------------------|------------------------------|
| Household Location Choice                    | Household (New or<br>Moving)           | Residential Building<br>With Vacant Unit        | Multinomial Logit            |
| Employment Location Choice                   | Job (New or Moving)                    | Non-residential Build-<br>ing With Vacant Space | Multinomial Logit            |
| Home-based Job Choice Worker (Without Job)   |                                        | Binary Choice (Work at Home)                    | Binary Logit                 |
| Workplace Choice                             | Non Home Based<br>Worker (Without Job) | Vacant Job                                      | Multinomial Logit            |
| Real Estate Development Development Proposal |                                        | Parcel (With Vacant Land)                       | Multinomial Logit<br>Sampler |
| Real Estate Price Parcel                     |                                        | Price Per Square Foot                           | Multiple Regression          |

Source: Center for Urban Simulation and Policy Analysis (2009), p. 87.



## 4.3 Data Requirement for UrbanSim Applications.

UrbanSim is an evolving set of models, some of which have been adapted to different data structures and geographic units of analysis, such as grid cells, parcels, buildings and zones. Each of these models, depending on how the user specifies the model, creates its own data

requirements. Therefore, documenting a universal set of data requirements for all UrbanSim users is impossible.

#### 4.3.1 General Tables Used in UrbanSim.

Most of UrbanSim tables are optional. The required set of tables is determined by the set of models configured for a run. In this section we describe the database tables that are of general use, i.e. not specific to either grid cell or parcel or zone based applications.

#### Databases Tables About Employment.

a) The annual\_employment\_control\_totals table.

This table gives total target quantities of employment, by sector, by home-based, and by year for each simulated year.

| Column Name                     | Data Type | Description                                               |
|---------------------------------|-----------|-----------------------------------------------------------|
| sector_id                       | integer   | Index into the employment_sectors table                   |
| year                            | integer   |                                                           |
| total_home_based_employment     | integer   | Target home based employment for this sector and year     |
| total_non_home_based_employment | integer   | Target non-home based employment for this sector and year |

#### b) The annual\_relocation\_rates\_for\_jobs table.

This table is only used by the Employment Relocation Model.

| Column Name                | Data Type | Description                                                                 |
|----------------------------|-----------|-----------------------------------------------------------------------------|
| sector_id                  | integer   | Index into the employment_sectors table                                     |
| job_relocation_probability | float     | Probability that a job in this sector will relocate within the time span of |
|                            |           | one year                                                                    |

#### c) The employment\_sectors table.

An EmploymentSector is a logical category of employment, such as "automobile\_sales" or "shipping". Each row defines one EmploymentSector.

| Column Name | Data Type | Description               |
|-------------|-----------|---------------------------|
| sector_id   | integer   | Unique identifier         |
| name        | varchar   | Unique name of the Sector |

d) The employment\_adhoc\_sector\_groups table.

Each row defines one EmploymentAdHocSectorGroup, but not the group's membership - the memberships are defined in the employment\_adhoc\_sector\_group\_definitions table.

| Column Name | Data Type | Description              |
|-------------|-----------|--------------------------|
| group_id    | integer   | Unique identifier        |
| name        | varchar   | Unique name of the Group |

e) The employment\_adhoc\_sector\_group\_definitions table.

This table defines the set of employment\_sectors in each EmploymentSectorAdHocGroup. Each row defines one "belongs to" relationship (a particular EmploymentSector "belongs to" a particular EmploymentSectorAdHocGroup).

| Column Name | Data Type | Description                                         |
|-------------|-----------|-----------------------------------------------------|
| sector_id   | integer   | Index into the employment_sectors table             |
| group_id    | integer   | Index into the employment_adhoc_sector_groups table |

f) The job\_building\_types table.

This table describes building types for jobs.

| Column Name | Data Type | Description                     |
|-------------|-----------|---------------------------------|
| id          | integer   | Unique identifier               |
| name        | string    | Name of type, e.g. "commercial" |
| home_based  | boolean   | True if home-based              |

#### Databases Tables About Households.

a) The annual\_household\_control\_totals table.

This table gives target quantities of households classified by year and an optional set of other user-defined attributes, such as race of head, or size of household. Each attribute is a column.

The table's key is a combination of all attributes other than total\_number\_of\_households. The table must contain a row for each attribute and each simulated year.

| Column Name                | Data Type | Description                                                              |
|----------------------------|-----------|--------------------------------------------------------------------------|
| year                       | integer   | Year for the total                                                       |
| age_of_head                | integer   | (optional) Household characteristic bin number of age of head of house-  |
|                            |           | hold                                                                     |
| cars                       | integer   | (optional) Household characteristic bin number of number of cars in      |
|                            |           | household                                                                |
| children                   | integer   | (optional) Household characteristic bin number of number of children     |
|                            |           | in household                                                             |
| income                     | integer   | (optional) Household characteristic bin number of household income       |
| persons                    | integer   | (optional) Household characteristic bin number of size of household in   |
|                            |           | number of people                                                         |
| race_id                    | integer   | (optional) Household characteristic bin number of race of head of house- |
|                            |           | hold                                                                     |
| workers                    | integer   | (optional) Household characteristic bin number of employed people in     |
|                            |           | household                                                                |
| total_number_of_households | integer   | Target number of households of this household type and year              |

b) The annual\_relocation\_rates\_for\_households table.

The table gives the annual relocation rates for households, by combination of age and income of household. These values are the probabilities that a household with the given characteristics will relocate within the time span of one year. They do not change from year to year.

| Column Name               | Data Type | Description                                                           |
|---------------------------|-----------|-----------------------------------------------------------------------|
| age_min                   | integer   | The minimum age for which this probability is valid.                  |
| age_max                   | integer   | The maximum age for which this probability is valid, -1 means no max- |
|                           |           | imum                                                                  |
| income_min                | integer   | The minimum income for which this probability is valid.               |
| income_max                | integer   | The maximum income for which this probability is valid, -1 means no   |
|                           |           | maximum                                                               |
| probability_of_relocating | float     | The probability of relocating in a year.                              |

#### c) The households table.

This table contains only row per household in the region. All people in the region belong to exactly one household. The table below, which is from a gridcell-based application, also works for a parcel-based application with only one exception: the gridcell identifier column should be replaced by a building id.

| Column Name  | Data Type | Description                                                                           |
|--------------|-----------|---------------------------------------------------------------------------------------|
| household_id | integer   | Unique identifier                                                                     |
| grid_id      | integer   | Grid cell this household resides in; zero if currently not residing in a housing unit |
| persons      | integer   | Total number of people living in this household.                                      |
| workers      | integer   | Total number of workers living in this household.                                     |
| age_of_head  | integer   | Age of head of the household                                                          |
| income       | integer   | Income of this household                                                              |
| children     | integer   | Number of children living in this household                                           |
| race_id      | integer   | Race of head of household                                                             |
| cars         | integer   | Number of cars in this household                                                      |

d) The household\_characteristics\_for\_ht table.

This table gives bin definitions for the characterizing households used by the Household Transition Model to produce an N-dimensional partitioning of the households. The names of the characteristics must match attribute names in the households table. If a characteristic is used in the table annual\_household\_control\_totals, the names in both tables must also match.

The table has the following structure:

| Column Name    | Data Type | Description                                                                               |
|----------------|-----------|-------------------------------------------------------------------------------------------|
| characteristic | varchar   | See above for examples                                                                    |
| min            | integer   | Minimum value for this bin for this characteristic. Values are placed in a bin iff min <= |
|                |           | value <= max                                                                              |
| max            | integer   | Maximum value for this bin for this characteristic; -1 means infinity / no maximum        |

#### e) The race\_name table.

This table is required in the only case where race related variables are included in model specifications. It has one row per race.

| Column Name | Data Type | Description                    |
|-------------|-----------|--------------------------------|
| race_id     | integer   | Unique identifier              |
| name        | varchar   | Name of the race               |
| minority    | boolean   | True if the race is a minority |

#### Databases Tables About Transportation Analysis Zones.

#### a) The zones table.

Traffic analysis zones are spatial entities. In UrbanSim, these zones are rasterized by the grid cells.<sup>11</sup> In practice, the zones table often includes other columns, depending upon the needs of the models. These data should be updated with the results of any travel model run with whatever attributes are needed

| Column Name            | Data Type | Description                                                     |  | Description |  |
|------------------------|-----------|-----------------------------------------------------------------|--|-------------|--|
| zone_id                | integer   | Unique identifier                                               |  |             |  |
| travel_time_to_airport | integer   | (optional) Units: Minutes                                       |  |             |  |
| travel_time_to_cbd     | integer   | (optional) Units: Minutes                                       |  |             |  |
| faz_id                 | integer   | (optional) Foreign key of the FAZ (forecast analysis zone) con- |  |             |  |
|                        |           | taining this zone.                                              |  |             |  |

#### b) The travel data table.

The travel data can be grasped as the composite utility of going from one location to another given the available travel modes for that household type.<sup>12</sup> Intrazonal travel may have less utility than interzonal travel if mass transit routes or highway options allow for easier travel to an adjacent zone than within a zone. logsum3 often shows lower utility than logsum2 because the logsums represent composite utilities for different household types. So, for example, it may be that 2 car households tend to have a more favorable person- to-car ratio than 3+ car households. Or it may be that 2 car households are more frequently able to combine trips, decreasing the disutility of any individual trip. These data should be updated with the results of any travel model run.

| Column Name  | Data Type | Description                                                       |
|--------------|-----------|-------------------------------------------------------------------|
| from_zone_id | integer   | "From" traffic analysis zone                                      |
| to_zone_id   | integer   | "To" traffic analysis zone                                        |
| logsum0      | float     | (optional) Logsum value for 0 vehicle households, transit logsum  |
| logsum1      | float     | (optional) Logsum value for 1 vehicle households, transit logsum  |
|              | float     |                                                                   |
| logsumN      | float     | (optional) Logsum value for N+ vehicle households, transit logsum |

<sup>&</sup>lt;sup>11</sup> the zones are distorted to fit to cell boundaries and thus will have rough or stair-stepped edges

<sup>&</sup>lt;sup>12</sup> Negative values reflect the fact that the time required gives the trip negative utility.

#### Other Databases Tables.

a) The base\_year table.

This table is optional. It is only used if the base year is not defined in the configuration. It has one row only.

| Column Name | Data Type | Description       |
|-------------|-----------|-------------------|
| year        | integer   | Year of base data |

b) The cities table.

The table is only needed if you want to create indicators on city level.

| Column Name | Data Type | Description       |
|-------------|-----------|-------------------|
| city_id     | integer   | Unique identifier |
| city_name   | varchar   |                   |

c) The counties table.

The table is only needed if you want to create indicators on county level.

| Column Name | Data Type | Description       |
|-------------|-----------|-------------------|
| county_id   | integer   | Unique identifier |
| county_name | varchar   |                   |

d) The scenario\_information table.

This table gives the description of the scenario. It has one row only.

| Column Name         | Data Type | Description                                                       |
|---------------------|-----------|-------------------------------------------------------------------|
| description         | varchar   | (optional) Human readable description                             |
| parent_database_url | varchar   | The name of the next database in the chain of scenario databases. |

#### e) The urbansim constants table.

This table gives the constants required for computations made by the various models. It has a single row with one column per constant.

| Column Name                         | Data Type | Description                                                        |
|-------------------------------------|-----------|--------------------------------------------------------------------|
| cell_size                           | float     | Width and height of each grid cell in units                        |
| units                               | varchar   | Units of measurement, eg. "meters" or "feet"                       |
| walking_distance_circle_radius      | float     | Walking distance in meters, e.g., 600 m                            |
| young_age                           | integer   | Max age for a person to be considered young                        |
| property_value_to_annual_cost_ratio | float     | Ratio of the total property value to an annual rent for that       |
|                                     |           | property                                                           |
| low_income_fraction                 | float     | Fraction of the total number of households considered to have      |
|                                     |           | low incomes, e.g., 0.1                                             |
| mid_income_fraction                 | float     | Fraction of the total number of households considered to have      |
|                                     |           | mid-level incomes, e.g., 0.5                                       |
| near_arterial_threshold             | float     | Line distance from the centroid of a cell to an arterial for it to |
|                                     |           | be considered nearby, e.g., 300                                    |
| near_highway_threshold              | float     | Line distance from the centroid to a highway for it to be con-     |
|                                     |           | sidered nearby, e.g., 300                                          |
| percent_coverage_threshold          | integer   | The threshold above which a grid cell's percent_*, e.g. per-       |
|                                     |           | cent_wetland, must be to be considered "covered" for that at-      |
|                                     |           | tribute. So, if percent_coverage_threshhold is 50 percent and      |
|                                     |           | percent_wetland is 60 percent, the grid cell would be consid-      |
|                                     |           | ered "covered" by wetland.                                         |
| recent_years                        | integer   | Maximum number of years to look back when considering re-          |
|                                     |           | cent transitions. For example, if recent_years = 3, then the       |
|                                     |           | value commercial_sqft_recently_added in the gridcells              |
|                                     |           | table would refer to the number of square feet of commercial       |
|                                     |           | space built in the last 3 years.                                   |

#### 4.3.2 Data for Grid Cells Based Applications.

Grid cells based applications require several kinds of data:

- Database tables about Grid cells;
- Database tables about Development types;
- Database tables about Employment events;
- Database tables about Development constraints;
- Database tables about Target vacancies.

#### Databases Tables About Grid Cells.

a) The gridcells table.

This table contains the geographic information partitioned into a rectangular grid of rectangular cells. Attributes that are marked as optional are only required by specific

variables. Thus, the requirement of those attributes depends on model specifications. Attributes not marked as optional are used by various models.

| Column Name                      | Data Type | Description                                                       |
|----------------------------------|-----------|-------------------------------------------------------------------|
| grid_id                          | integer   | Unique identifier                                                 |
| commercial_sqft                  | integer   | The sum of the square footage of buildings that are classified    |
|                                  |           | as commercial (generally including retail and office land uses).  |
|                                  |           | This is not a measure of land area.                               |
| development_type_id              | integer   | Index into the Development Types table                            |
| distance_to_arterial             | float     | (optional) Units: urbansim_constants.units                        |
| distance_to_highway              | float     | (optional) Units: urbansim_constants.units                        |
| governmental_sqft                | integer   | The sum of the square footage of buildings that are classified as |
|                                  |           | governmental                                                      |
| industrial_sqft                  | integer   | The sum of the square footage of buildings that are classified as |
|                                  |           | industrial                                                        |
| commercial_improvement_value     | integer   | See description, above                                            |
| industrial_improvement_value     | integer   | See description, above                                            |
| governmental_improvement_value   | integer   | See description, above                                            |
| nonresidential_land_value        | integer   | Units, e.g. dollars                                               |
| residential_improvement_value    | integer   | See description, above                                            |
| residential_land_value           | integer   | Units, e.g. dollars                                               |
| residential_units                | integer   | Number of residential units                                       |
| relative_x                       | integer   | X coordinate in grid coordinate system                            |
| relative_y                       | integer   | Y coordinate in grid coordinate system                            |
| year_built                       | integer   | e.g. 2002                                                         |
| plan_type_id                     | integer   | An id indicating the plan type of the grid cell                   |
| percent_agricultural_protected   | integer   | (optional)                                                        |
| land                             |           |                                                                   |
| percent_water                    | integer   | (optional) Percentage of this cell covered by water               |
| percent_stream_buffer            | integer   | (optional) Percentage of this cell covered by stream buffer       |
| percent_floodplain               | integer   | (optional) Percentage of this cell covered by flood plain         |
| percent_wetland                  | integer   | (optional) Percentage of this cell covered by wetland             |
| percent_slope                    | integer   | (optional) Percentage of this cell covered by slope               |
| percent_open_space               | integer   | (optional) Percentage of this cell covered by open space          |
| percent_public_space             | integer   | (optional) Percentage of this cell covered by public space        |
| percent_roads                    | integer   | (optional) Percentage of this cell covered by roads               |
| percent_undevelopable            | integer   | (optional)                                                        |
| is_outside_urban_growth_boundary | boolean   | (optional)                                                        |
| is_state_land                    | boolean   | (optional)                                                        |
| is_federal_land                  | boolean   | (optional)                                                        |
| is_inside_military_base          | boolean   | (optional)                                                        |
| is_inside_national_forest        | boolean   | (optional)                                                        |
| is_inside_tribal_land            | boolean   | (optional)                                                        |
| zone_id                          | integer   | Traffic analysis zone that contains this grid cell's centroid     |
| city_id                          | integer   | (optional) City this grid cell belongs to                         |
| county_id                        | integer   | (optional) County this grid cell belongs to                       |
| fraction_residential_land        | float     | Fraction of residential land in this cell                         |
| total_nonres_sqft                | integer   | (optional)                                                        |
| total undevelopable soft         | integer   | (optional)                                                        |

#### b) The plan\_types table

plan\_types are synonymous with Zoning types and with Planned Land Use (PLU) types. The distinction is arbitrary and is to be made by the user. There is only one row per plan type.

| Column Name  | Data Type | Description                  |
|--------------|-----------|------------------------------|
| plan_type_id | integer   | Unique identifier            |
| name         | varchar   | Unique name of the Plan Type |

#### Databases Tables About Development Types.

Development types are used to categorize a grid cell according to the "type" of development currently in the grid cell. As an example, grid cells with only a few residential units and no other square footage might be classified as "low density residential" which may be abbreviated as "R1". Other grid cells may be categorized as mixed use, commercial, etc. The set of development types to employ is arbitrary. Development types are grouped by two nested mechanisms: groups and non-overlapping-groups. Each development type may be a member of multiple groups. Each group may be a member of multiple non-overlapping-group must be disjoint (i.e., may not share any development types).

Groups and non-overlapping-groups are used in the calculation of the variables in the models, so to fully understand them requires understanding the model definitions.

#### a) The development\_type table.

Each row of this table defines one development type.

| Column Name         | Data Type | Description                                             |
|---------------------|-----------|---------------------------------------------------------|
| development_type_id | integer   | Unique identifier for this row.                         |
| name                | varchar   | Name of the development type.                           |
| min_units           | integer   | Minimum number of units to be in this development type. |
| max_units           | integer   | Maximum number of units to be in this development type. |
| min_sqft            | integer   | Minimum square feet to be in this development type.     |
| max_sqft            | integer   | Maximum square feet to be in this development type.     |

#### b) The development type groups table.

Each row defines one development type group, but not the group's membership - the memberships are defined in the development\_type\_group\_definitions table.

| Column Name            | Data Type | Description                                                              |
|------------------------|-----------|--------------------------------------------------------------------------|
| group_id               | integer   | Unique identifier for this row.                                          |
| name                   | varchar   | Unique name of the development type group.                               |
| non_overlapping_groups | varchar   | Name of the non-overlapping-group or empty for no non-overlapping-group. |

The set of required development type groups and non-overlapping-groups is determined by the set of variables used by the models being estimated or simulated. Thus, there is no way to a-priori specify which development type groups will be needed for your application of UrbanSim.<sup>13</sup>

#### c) The development\_type\_group\_definitions table.

This table defines the set of development\_types in each development type group. Each row defines one "belongs to" relationship (a particular development type that "belongs to" a particular development type group).

| Column Name         | Data Type | Description                                  |
|---------------------|-----------|----------------------------------------------|
| development_type_id | integer   | Index into the development_types table       |
| group_id            | integer   | Index into the development_type_groups table |

#### Databases Tables About Development Events.

These tables represent events in the real estate development model. Events which are planned to take place in the future are stored in the development\_events table, events that occured prior to the base year are stored in the development\_event\_history table. Both tables can contain columns of the pattern "units\_change\_type". Each value determines a type of change for that type of units. The different values are:

- "A" for Add
- "R" for Replace
- "D" for Delete

If this column is missing for a certain type of units, the default value is "A" for all events.

a) The development\_type\_group\_definitions table.

These development events are changes to grid cells which are planned to occur in the future. For any given year, one may plan any number of changes to the attributes of any number of

<sup>&</sup>lt;sup>13</sup> There however are two exceptions: first, the model Events Coordinator (Center for Urban Simulation and Policy Analysis, 2009, 25.4.18) is internally using groups 'residential', 'mixed\_use', 'commercial', 'industrial', and 'governmental'. Second, the Land Price Model (Center for Urban Simulation and Policy Analysis, 2009, 25.4.1) is using by default a filter that requires a group called 'developable'. Therefore, if the user does not change these settings, he should make sure that the table contains these entries.

gridcells. Each change represents an addition, a subtraction or a replacement of the specified number of sqft, residential units, and improvement values.

For instance, if grid cell 23 is to grow by 200 residential units in 2008 (an apartment building is built), the table would include a row with scheduled\_year = 2008, grid\_id = 23, residential\_units = 200, and residential\_units\_change\_type = 'A'.

The value in the "improvement\_value" fields, below, are used to indicate how to change the associated improvement\_value for this grid cell. Each event will add/subtract/replace (improvement\_value \* (number of units [or sqft] being built by this event)) to the current improvement value in this grid cell. The units of the improvement are currency value, e.g. dollars.<sup>14</sup>

| Column Name                    | Data Type | Description                                 |
|--------------------------------|-----------|---------------------------------------------|
| grid_id                        | integer   | Grid cell where the event takes place       |
| scheduled_year                 | short     | Year in which the event will be implemented |
| residential_units              | integer   |                                             |
| commercial_sqft                | integer   |                                             |
| industrial_sqft                | integer   |                                             |
| governmental_sqft              | integer   |                                             |
| residential_units_change_type  | char      | (optional) see 19.3                         |
| commercial_sqft_change_type    | char      | (optional) see 19.3                         |
| industrial_sqft_change_type    | char      | (optional) see 19.3                         |
| governmental_sqft_change_type  | char      | (optional) see 19.3                         |
| residential_improvement_value  | integer   | See description, above                      |
| commercial_improvement_value   | integer   | See description, above                      |
| industrial_improvement_value   | integer   | See description, above                      |
| governmental_improvement_value | integer   | See description, above                      |

#### b) The development event history table.

The development\_event\_history table records the development events that occurred prior to the base year. This table uses a subset of the schema used for development\_events. It can be considered an extension back in time of the development\_events table, though with additional constraints, specified below.

<sup>&</sup>lt;sup>14</sup> The described procedure is implemented in Events Coordinator (Center for Urban Simulation and Policy Analysis, 2009, 25.4.18).

| Column Name                    | Data Type | Description                                                   |
|--------------------------------|-----------|---------------------------------------------------------------|
| grid_id                        | integer   | Grid cell where the event takes place                         |
| scheduled_year                 | short     | Year in which the event was implemented                       |
| starting_development_type_id   | integer   | (optional) This will be the value of the development_type for |
|                                |           | this gridcell after "unrolling" this development event.       |
| residential_units              | integer   |                                                               |
| commercial_sqft                | integer   |                                                               |
| industrial_sqft                | integer   |                                                               |
| governmental_sqft              | integer   |                                                               |
| residential_units_change_type  | char      | (optional) see 19.3                                           |
| commercial_sqft_change_type    | char      | (optional) see 19.3                                           |
| industrial_sqft_change_type    | char      | (optional) see 19.3                                           |
| governmental_sqft_change_type  | char      | (optional) see 19.3                                           |
| residential_improvement_value  | integer   | See description, above                                        |
| commercial_improvement_value   | integer   | See description, above                                        |
| industrial_improvement_value   | integer   | See description, above                                        |
| governmental_improvement_value | integer   | See description, above                                        |

#### Databases Tables About Development Constraints.

a) The development\_contraints table.

This table defines rules that constrain the possible development types a developer can create on a particular grid cell. Each row defines one rule. Development is not allowed on any gridcell that matches any of these rules. A grid cell matches a rule if the attribute values for the grid cell match all of the values in the rule (rule columns with the value "-1" are ignored when determining a match).

| Column Name                    | Data Type        | Description                                                            |
|--------------------------------|------------------|------------------------------------------------------------------------|
| constraint_id                  | integer          | Unique rule identification number                                      |
| name-of-a-gridcell-attribute-1 | integer or float | Value for this attribute, or "-1" if this attribute is not part of the |
|                                |                  | constraint (e.g. don't care)                                           |
|                                |                  |                                                                        |
| name-of-a-gridcell-attribute-N | integer or float |                                                                        |
| min_units                      | integer          | Minimum number of residential units for a gridcell. A devel-           |
|                                |                  | opment project may only be placed on this gridcell if it will re-      |
|                                |                  | sult in this gridcell containing at least this number of residential   |
|                                |                  | units.                                                                 |
| max_units                      | integer          | Maximum number of residential units for a gridcell. A devel-           |
|                                |                  | opment project may only be placed on this gridcell if it will re-      |
|                                |                  | sult in this gridcell containing at most this number of residential    |
|                                |                  | units.                                                                 |
| min_commercial_sqft            | integer          | Minimum number of commercial sqft. for a gridcell. A de-               |
|                                |                  | velopment project may only be placed on this gridcell if it will       |
|                                |                  | result in this gridcell containing at least this number of commer-     |
|                                |                  | cial sqft.                                                             |
| max_commercial_sqft            | integer          | Maximum number of commercial sqft. for a gridcell. A de-               |
|                                |                  | velopment project may only be placed on this gridcell if it will       |
|                                |                  | result in this gridcell containing at most this number of com-         |
|                                |                  | mercial sqft.                                                          |
| min_industrial_sqft            | integer          | Minimum number of industrial sqft. for a gridcell. A develop-          |
|                                |                  | ment project may only be placed on this gridcell if it will result     |
|                                |                  | in this gridcell containing at least this number of industrial sqft.   |
| max_industrial_sqft            | integer          | Maximum number of industrial sqft. for a gridcell. A develop-          |
|                                |                  | ment project may only be placed on this gridcell if it will result     |
|                                |                  | in this gridcell containing at most this number of industrial sqft.    |

#### Databases Tables About Target Vacancies.

a) The target\_vacancies table.

The target\_vacancies table gives the model information about acceptable vacancy rates. The table has one row for each year the simulation runs. Each row gives target values for the residential and nonresidential vacancies for that year, which are defined below. Only data after the base year is used.

| Column Name                          | Data Type | Description                                                      |
|--------------------------------------|-----------|------------------------------------------------------------------|
| year                                 | integer   | Year of the simulation for which the vacancy targets apply       |
| target_total_residential_vacancy     | float     | Ratio of unused residential units to total residential units     |
| target_total_non_residential_vacancy | float     | Ratio of unused nonresidential sqft to total nonresidential sqft |

#### 4.3.3 Data for Parcels Based Applications.

Parcel based applications require the following types of data:

- Database tables about Parcels;
- Database tables about Buildings;

- Database tables about Development projects;
- Database tables about Development constraints;
- Database tables about Target vacancies;
- Database tables about Refinement of simulation results.

#### Databases Tables About Parcels.

a) The parcels table.

This table contains attributes about parcels. In general, there will be an identifier in this table for every other level of geography that you may want to aggregate up to. In this example, there are attributes for zones, cities, counties, census blocks, etc. Having these identifiers on the parcel makes it easier to aggregate indicators up to higher level geographies. Any other attributes that one may want to restrict development by, or update throughout a simulation could be stored here as well.

| Column Name        | Data Type | Description                                                       |
|--------------------|-----------|-------------------------------------------------------------------|
| parcel_id          | integer   | unique identifier                                                 |
| zone_id            | integer   | id number for the zone that the parcel's centroid falls within    |
| land_use_type_id   | integer   | identifies the land use of the parcel                             |
| city_id            | integer   | id number for the city that the parcel's centroid falls within    |
| county_id          | integer   | id number for the county that the parcel's centroid falls within  |
| plan_type_id       | integer   | id number that identifies the parcel's plan type                  |
| parcel_sqft        | integer   | square feet of the parcel as an integer                           |
| assessor_parcel_id | integer   | (optional) original tax assessor's id number                      |
| tax_exempt_flag    | integer   | (optional) identifies parcel as tax exempt or not                 |
| land_value         | long      | value of the land from the assessor                               |
| is_in_flood_plain  | integer   | (optional) indicates whether or not a parcel is in a flood plain  |
| is_on_steep_slope  | integer   | (optional) indicates whether or not a parcel is on a steep slope  |
| is_in_fault_zone   | integer   | (optional) indicates whether or not a parcel is in a fault zone   |
| centroid_x         | long      | state plane x coordinate of parcel centroid                       |
| centroid_y         | long      | state plane y coordinate of parcel centroid                       |
| census_block_id    | integer   | (optional) id number for the census block that the parcel's cen-  |
|                    |           | troid falls within                                                |
| raz_id             | integer   | (optional) id number for the raz that the parcel's centroid falls |
|                    |           | within                                                            |

#### Databases Tables About Buildings.

a) The Buildings table.

In recently developed UrbanSim applications, buildings of all kinds are represented in their own table, and linked to the basic spatial unit used for location choice: grid cell, parcel, or zone. This configuration provides simple and flexible means of organizing the data for UrbanSim. The buildings table is similar for each of the types of applications, whether grid cell, parcel or zone – the only significant difference is the location identifier. In the table below, parcel id is included, but for grid cell or zone applications, the user should substitute grid cell id or zone id.

| Column Name          | Data Type | Description                                                     |
|----------------------|-----------|-----------------------------------------------------------------|
| building_id          | integer   | unique identifier                                               |
| building_quality_id  | integer   | (optional) identified for building quality                      |
| building_type_id     | integer   | identifier for building type; valid id in the building_types    |
|                      |           | table                                                           |
| improvement_value    | long      | value of building (replacement cost)                            |
| land_area            | long      | land area (usually in sqft) associated with building, includes  |
|                      |           | footprint plus associated area such as landscaping and parking. |
| non_residential_sqft | long      | non-residential square footage of building                      |
| parcel_id            | integer   | identifier of parcel in which building is located               |
| residential_units    | integer   | number of residential units in the building                     |
| sqft_per_unit        | integer   | number of residential square feet per unit in the building      |
| stories              | integer   | (optional) number of stories in the building                    |
| tax_exempt           | integer   | (optional) indicator for whether building is tax-exempt         |
| year_built           | integer   | year of construction of the building                            |

#### b) The Buildings\_types table.

This table gives information about available types of buildings.

| Column Name                       | Data Type | Description                                                     |
|-----------------------------------|-----------|-----------------------------------------------------------------|
| building_type_id                  | integer   | unique identifier                                               |
| building_type_name                | varchar   | name of the building type                                       |
| description                       | varchar   | (optional) description of the building type                     |
| generic_building_type_id          | integer   | (optional) identifier for generic building type                 |
| generic_building_type_description | varchar   | (optional)                                                      |
| is_residential                    | boolean   | 1 if this building type is residential, 0 otherwise             |
| unit_name                         | varchar   | name of units for this building type, e.g. 'commercial_sqft' or |
|                                   |           | 'residential_units'                                             |

#### Databases Tables About Development Projects.

a) The development\_project\_proposals table.

A record in this table, when combined with one or more records in the development\_project\_components table, represents a "known" development project. This table would be populated either with projects known to be coming in the future or, during a population run, with projects that are in the middle of their development according to their velocity function.

| Column Name             | Data Type | Description                                                        |
|-------------------------|-----------|--------------------------------------------------------------------|
| development_project_id  | integer   | unique identifier                                                  |
| development_template_id | integer   | indicates the development template that represents the project     |
| far                     | float     | floor to area ratio of the project                                 |
| percent_open            | integer   | the percent of the land area of the project accounted for by       |
|                         |           | "overhead" uses such as rights of way or open space                |
| status_id               | integer   | this represents active, proposed, or planned developments with     |
|                         |           | the following codes: 1: in active development, 2: proposed for     |
|                         |           | development, 3: planned and will be developed, 4: tentative, 5:    |
|                         |           | not available (already developed, 6: refused                       |
| parce1_id               | integer   | indicates the parcel_id on which the development occurs            |
| start_year              | integer   | the year in which this project is expected to begin building       |
| built_sqft_to_date      | integer   | the number of non-residential sqft built in the current simulation |
|                         |           | year                                                               |
| built_units_to_date     | integer   | the number of residential units built in the current simulation    |
|                         |           | year                                                               |

b) The development\_project\_proposal\_component table.

A record in this table represents a portion of a development project identified in the development\_project\_proposals table. In some sense a single record here is meant to represent a single building, or part of a building. Therefore individual records here do not necessarily represent single free-standing buildings, although they are mostly treated that way. This table allows for the flexible representation of mixed uses to occur on a parcel. Examples include multiple free-standing buildings with different uses, a single building with multiple uses inside of it (a single record for each use), or further complex representations of mixed use. This table is not required by UrbanSim, but it is created by the developer model and cached every simulation year.

| Column Name                      | Data Type | Description                                                   |
|----------------------------------|-----------|---------------------------------------------------------------|
| development_project_component_id | integer   | unique identifier                                             |
| development_project_id           | integer   | identifies which development the project belongs to           |
| velocity_function_id             | integer   | identifies the rate or function by which the project develops |
|                                  |           | over time                                                     |
| percent_of_building_sqft         | integer   | identifies the percentage of the building that this component |
|                                  |           | takes up. 100% would indicate a free-standing building with   |
|                                  |           | a single use, and several records with percent_of_building    |
|                                  |           | sqft adding up to 100% would indicate a multiple use single   |
|                                  |           | building.                                                     |
| construction_cost_per_unit       | integer   | the per unit construction cost for residential uses only      |
| sqft_per_unit                    | integer   | the square footage per residential unit                       |
| building_type_id                 | integer   | indicates the building type of this particular component      |
| land_area                        | integer   | the land area "claimed" by the building component, includ-    |
|                                  |           | ing not only the building footprint but also additional land  |
|                                  |           | used such as yards, parking lots, etc.                        |
| residential_units                | integer   | the number of residential units in the building component     |

#### c) The development\_templates table.

This table, along with corresponding records in the development\_template\_components table, represents development templates that can be used to define virtually any size and configuration of a development project, from a single house on an infill lot to a large subdivision, to a mixed use project with retail on the first floor and condominiums above. The contents of this table are roughly comparable to the development\_projects table, since development templates become proposals once they are determined to fit within a parcel and are allowed by development constraints, and then become projects if they are chosen to be constructed.

| Data Type | Description                                                                                       |
|-----------|---------------------------------------------------------------------------------------------------|
| integer   | unique identifier                                                                                 |
| integer   | the percent of the land area of the project accounted for by                                      |
|           | "overhead" uses such as rights of way or open space                                               |
| integer   | minimum amount of land in square feet to be utilized for this                                     |
|           | development                                                                                       |
| integer   | maximum amount of land in square feet to be utilized for this                                     |
|           | development                                                                                       |
| integer   | a readable name that describes the 'density' field: units per acre,                               |
|           | FAR                                                                                               |
| integer   | indicates the density of the development                                                          |
| integer   | specifies the land use type for the development template                                          |
| integer   | a readable name that describes the type of development this                                       |
|           | record represents (e.g. SFR-parcel, MFR-apartment, MFR-                                           |
|           | condo, etc.), this field is not used by the model and is there                                    |
|           | to make the table more readable                                                                   |
|           | Data Type<br>integer<br>integer<br>integer<br>integer<br>integer<br>integer<br>integer<br>integer |

d) The development\_template\_component table.

This table is roughly equivalent to the development\_project\_proposal\_components table and represents buildings or parts of buildings to be included in a particular development template. By breaking development templates into components, development project templates can be configured as hierarchies or combinations of building blocks, providing a very flexible mean of representing a wide variety of development types. Note that the templates can be generated using real or hypothetical data, since they will be compared to regulatory constraints and the size constraints of parcels.

| Column Name                       | Data Type | Description                                                |  |  |
|-----------------------------------|-----------|------------------------------------------------------------|--|--|
| development_template_component_id | integer   | unique identifier                                          |  |  |
| development_template_id           | integer   | indicates which development template this component be-    |  |  |
|                                   |           | longs to                                                   |  |  |
| velocity_funtion_id               | integer   | indicates the velocity function used by this template      |  |  |
| building_type_id                  | integer   | indicates the building type of this particular component   |  |  |
| percent_of_building_sqft          | integer   | identifies the percentage of the building that this compo- |  |  |
|                                   |           | nent takes up                                              |  |  |
| construction_cost_per_unit        | integer   | the per unit construction cost                             |  |  |
| building_sqft_per_unit            | integer   | the square footage per residential unit                    |  |  |

#### e) The velocity\_function table.

This table is designed to hold the velocity functions that specify the rate at which development is built out.

| Column Name                  | Data Type | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|------------------------------|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| velocity_function_id         | integer   | unique identifier                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| annual_construction_schedule | string    | this field will contain a numbered list in brackets of this<br>form: '[25, 50, 75, 100]' indicating with each entry the<br>percentage complete that the project would be in each year<br>from its initiation. A particular development_template<br>component or development_project_component will have<br>one velocity_function_id attached to it. This could take<br>the form [0, 0, 0, 33, 66, 100] for example, would have<br>no construction in its first 3 years, then in year 4 it would<br>be 33% complete, and 66% and 100% complete in years 5<br>and 6 respectively. |

#### f) The demolition\_cost\_per\_sqft table.

This table provides information to the developer model about the costs of demolition by building type. These numbers are used to calculate the cost of demolition of existing development so that a more accurate cost of redevelopment can be calculated.

| Column Name              | Data Type | Description                            |
|--------------------------|-----------|----------------------------------------|
| building_type_id         | integer   | building type                          |
| demolition_cost_per_sqft | integer   | cost in dollars per sqft of demolition |

#### g) The building\_sqft\_per\_job table.

This table contains information on the amount of space each job will take in a particular building type, by zone.

| Column Name           | Data Type | Description                                                  |
|-----------------------|-----------|--------------------------------------------------------------|
| zone_id               | integer   | the zone the record applies to                               |
| building_type_id      | integer   | the building type the record applies to                      |
| building_sqft_per_job | integer   | the sqft per job each job will take in a particular building |
|                       |           | type in a particular zone                                    |

#### Databases Tables About Development Constraints.

a) The development\_constraints table.

Since the parcel based real estate development model is fundamentally different than its grid cell based counterpart, this table differs substantially from the grid cell based version application. This table defines rules that restrict the possible development types a developer can create on a particular parcel. Each row defines one rule. Development is not allowed on any parcel that matches any of these rules.

| Column Name              | Data Type   | Description                                                |
|--------------------------|-------------|------------------------------------------------------------|
| constraint_id            | integer     | Unique rule identification number                          |
| constraint_type          | string (14) | units_per_acre or far (floor-area-ratio)                   |
| generic_land_use_type_id | integer     | Id of a record in the generic_land_use_types table         |
| maximum                  | integer     | Maximum value for the allowed development, in terms of the |
|                          |             | constraint type                                            |
| minimum                  | integer     | Minimum value for the allowed development, in terms of the |
|                          |             | constraint type                                            |
| plan_type_id             | integer     | Id of a record in the plan_types table.                    |

#### Databases Tables About Target Vacancy Rates.

a) The target\_vacancies table.

The target\_vacancies table is used by the development proposal choice model. It gives the model information about acceptable vacancy rates. The table has one row for each year the simulation runs. Each row gives target values for the residential and nonresidential vacancies for that year, which are defined below. Only data after the base year is used.

| Column Name      | Data Type | Description                                                             |
|------------------|-----------|-------------------------------------------------------------------------|
| year             | integer   | Year of the simulation for which the vacancy targets apply              |
| target_vacancy   | float     | Ratio of unused space to total space, based on residential_unit or sqft |
| building_type_id | Integer   | Id of a record in the building_types table                              |

#### Database Tables About Refinement of Simulation Results.

a) The refinements table.

The entries in this table define refinements to make to an existing simulation run. No fields can be null, if the attribute is not needed put a single quote (') in the field.

| Column Name                 | Data Type | Description                                                |
|-----------------------------|-----------|------------------------------------------------------------|
| refinement_id               | integer   | unique identifier                                          |
| agent_expression            | string    | string expression defining what agents to add or subtract, |
|                             |           | e.g. households, jobs                                      |
| location_capacity_attribute | string    | defines a capacity attribute such as non_residential_sqft  |
| location_expression         | string    | expression defining where to add or subtract agents, e.g.  |
|                             |           | 'zone = 123'                                               |
| amount                      | integer   | number of agents to add or subtract                        |
| year                        | integer   | year to which this refinement applies                      |
| action                      | string    | add, subtract, or target are the valid entries             |
| transaction_id              | integer   | if two or more records have matching transaction ids the   |
|                             |           | refinement model will attempt to balance between the re-   |
|                             |           | finements                                                  |

#### 4.3.4 Data for Zone Based Applications.

The zone based modeling is the most recent model system. It may even be considered experimental at this point. As it was modeled after that grid cell model system, it has many tables in common with it. Here are tables unique to the zone based model system.

#### Database Tables About Buildings.

a) The pseudo\_buildings table.

In order to test the zonal-level version of UrbanSim, a pseudo-buildings table has been created. It contains the summary contents of the real estate development model in a zone. Pseudo buildings are meant to represent the amount of commercial, governmental, industrial, and residential space in a zone. There are 4 pseudo building records per zone\_id, 1 each for each of the land uses. The attributes are updated during the simulation run by the model system.

| Column Name                | Data Type | Description                                                  |
|----------------------------|-----------|--------------------------------------------------------------|
| pseudo_building_id         | integer   | unique identifier                                            |
| annual_growth              | integer   | (optional) this is the amount that this type of building is  |
|                            |           | allowed to grow per simulation year in terms of floor space  |
|                            |           | or residential units                                         |
| residential_units          | integer   | the number of residential units for residential pseudo       |
|                            |           | buildings                                                    |
| zone_id                    | integer   | the zone in which this pseudo building is in                 |
| avg_value                  | integer   | the average value per unit or job space depending on the     |
|                            |           | building_type_id                                             |
| building_type_id           | integer   | the building type that matches up with the building_types    |
|                            |           | table                                                        |
| job_spaces_capacity        | integer   | the total number of job spaces allowed in this pseudo        |
|                            |           | building                                                     |
| residential_units_capacity | integer   | the total number of residential units allowed in this pseudo |
|                            |           | building                                                     |
| commercial_job_spaces      | integer   | the total number of commercial job spaces currently in this  |
|                            |           | pseudo building                                              |
| industrial_job_spaces      | integer   | the total number of industrial job spaces currently in this  |
|                            |           | pseudo building                                              |
| governmental_job_spaces    | integer   | the total number of governmental job spaces currently in     |
|                            |           | this pseudo building                                         |

## 5 Available Data

For the three cases studies, the available data allow to implement UrbanSim parcel based applications. Indeed for each of the case studies, land use and real estate date contains geographical data on parcels and on buildings. Data on employment, households; and transportation networks are also available.

Stratec and EPFL have drawn up the list of all the available data required to run UrbanSim for Brussels case study. Conversely to the other case studies, the application of Urban Sim to Brussels is fairly recent. All the available data for the Brussels, Zurich and Paris case studies are respectively in Appendix 1, 2 and 3. Brussels data list have been obtained from EFPL and Stratec. Zurich and Paris data have been obtained from Sustaincity Consortium agreement (2010).

## 6 References

- Allain, R. (2004) Morphologie urbaine. Géographie, aménagement et architecture de la ville. Armand Colin, Paris, 2004.
- Beaujeu-Garnier, J. (2004) Geographie urbaine. Armand Colin, Paris, 1995.
- Brueckner, J.K., J.-F. Thisse, Y. Zenou (1999) Why is central Paris rich and downtown Detroit poor? An amenity-based theory. *European Economic Review* 43, 91-107.
- Briant, A., *et al.* (2009) Dots to boxes: Do the size and shape of spatial units jeopardize economic geography estimations? *Journal of Urban Economics* (Forthcoming).
- Center for Urban Simulation and Policy Analysis. (2009), The Open Platform for Urban Simulation and UrbanSim Version 4.2.2. Users Guide and Reference Manual. University of Washington.
- Dujardin, C., I. Thomas and H. Tulkens (2007) Quelles frontières pour Bruxelles? Une mise à jour, *Reflets et Perspectives de la Vie Economique*, XLVI,156-176.
- Federal Register (2000) Standards for defining metropolitan and micropolitan statistical areas, Federal Register, vol. 65, n° 249, Wednesday, December 27, 2000/Notices.
- Fellmann, J.D, Getis, A., Getis, J., (2003) Human Geography. Landscapes of Human Activites. McGraw-Hill, 2003.
- Kammermann, M.A. (2007), Où commence l'agglomération de Genève, où finit celle de Zurich?, Office fédéral de la statistique OFS, downloaded March, 15th , 2010 at <u>http://www.bfs.admin.ch/bfs/portal/fr/index/news/medienmitteilungen/01.Document.89</u> <u>476.pdf</u>
- Kaplan, D.H., Wheeler, J.O., Holloway, S.R., Hodler, T.W. (2004), Urban Geography. John Wiley & Sons, 2004.
- Paulet, J.-P. (2000), Géographie urbaine. Armand Colin, Paris, 2000.
- Pumain, D. (2003), Scaling laws and urban systems. Mimeo
- Schuler, M., M. Perlik and P. Dessemontet (2009) Agglomérations et aires urbaines dans l'espace transfrontalier Ain Haute-Savoie Genève Vaud, Observatoire Statistique Transfontalier.
- Sustaincity Consortium agreement (2010), version 0.6, Tuesday, 16 February
- Van der Haegen H., Van Hecke, E., Juchtmans, G. (1996), Les régions urbaines belges en 1991, Institut National de Statistique, *Études Statistiques*, n° 104.

- Van Hecke, E., Halleux, J-M, Decroly, J-M, Mérenne-Schoumaker, B. (2009), *Noyaux d'habitat et Régions urbaines dans une Belgique urbanisées*, Enquête Socio-Economique 2001, Monographies, Direction générale Statistique et Information économique.
- Waddell, P. (2002). UrbanSim: Modeling urban development for land use, transportation, and environmental planning. *Journal of American planning Association*, 68(3), 297-314.
- Waddell, P. and Borning, A. (2004), A Case Study in Digital Government: Developing and Applying UrbanSim, a System for Simulating Urban Land Use, Transportation, and Environmental Impacts. Social Science Computer Review, 22 37-51.
- Waddell, P., Ulfarsson, G., Franklin, J., & Lobb, J. (2007). Incorporating land use in metropolitan transportation planning. *Transportation Research Part A*, 41(5), 382-410

## 7 Appendix

## 7.1 Available data for Brussels case study

| Category                 | Name and description                                                                      | Datatype     | Perimeter                 | Data owner/ Source<br>Availability                                        | Right of<br>use <sup>15</sup> |
|--------------------------|-------------------------------------------------------------------------------------------|--------------|---------------------------|---------------------------------------------------------------------------|-------------------------------|
| PERIMETERS <sup>16</sup> | Maps of the administrative boundaries                                                     | GIS – Raster | Belgium                   | Institut Géographique National - IGN<br>http://www.ngi.be/FR/FR4-1-1.shtm | Р                             |
|                          | Administrative boundaries of the regions, provinces, districts and communes               | GIS – Vector | Belgium                   | Institut Géographique National - IGN<br>http://www.ngi.be                 |                               |
|                          | Limit of the RER area (study area)                                                        | GIS – Vector | RER zone                  | STRATEC                                                                   | Р                             |
|                          | Limit of the Brussels morphological and functional agglomeration                          | GIS - Vector | Brussels<br>agglomeration | STRATEC / UCL                                                             | Ρ                             |
| NETWORKS                 | General maps of the road, rail and hydrographic networks : scales 1/800 000 and 1/200 000 | GIS - Raster | Belgium                   | Institut Géographique National - IGN<br>http://www.ngi.be/FR/FR4-1-2.shtm | Ρ                             |
|                          | Vectorized road networks                                                                  | GIS - Vector | Belgium                   | Institut Géographique National - IGN<br>http://www.ngi.be                 |                               |

<sup>&</sup>lt;sup>15</sup> P=public, R=restricted, C=confidential

<sup>&</sup>lt;sup>16</sup> The coordinate system of the geo-referenced maps and GIS files is the Belgian Lambert 1972 projection.

#### Working Paper 2.6: Descriptive and Geographical Data\_\_\_\_\_

| Category | Name and description                                          | Datatype                         | Perimeter    | Data owner/ Source<br>Availability                                                                                                                                         | Right of<br>use |
|----------|---------------------------------------------------------------|----------------------------------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
|          | Road network - Navteq data                                    | GIS - Vector                     | Europe/World | Navteq<br>http://www.navteq.com/                                                                                                                                           |                 |
|          | Road network - Tele-Atlas data                                | GIS - Vector                     | Europe/World | Tele-Atlas<br>http://www.teleatlas.com/index.htm                                                                                                                           |                 |
|          | Detailed vectorized road network of Wallonia                  | GIS - Vector;<br>Interactive map | Wallonia     | Mapping Portal of the Walloon Region<br>or via the ArcGIS server of the<br>Walloon Region (cartopro)<br><u>http://cartographie.wallonie.be/NewPo</u><br><u>rtailCarto/</u> | Р               |
|          | Detailed vectorized Brussels road network – URBIS             | GIS - Vector                     | Brussels     | Région de Bruxelles-Capitale<br>http://www.cirb.irisnet.be/site/fr/depart<br>ements/services/urbis/                                                                        |                 |
|          | Brugis - Interactive charts of Brussels Region                | Interactive map -<br>Image       | Brussels     | BruGIS - Site cartographique de la<br>Région bruxelloise<br><u>http://www.brugis.irisnet.be/brugis/fr/in</u><br><u>dex.html</u>                                            | Р               |
|          | TEC - Walloon public transport network maps and schedules     | PDF                              | Wallonia     | Transport En Commun - TEC<br>http://www.infotec.be/index.aspx?Pag<br>eld=633009288182808470                                                                                | Р               |
|          | De Lijn - Flemish public transport network maps and schedules | PDF                              | Flanders     | De Lijn<br>http://www.delijn.be/reisinformatie/net<br>plannen/index.htm                                                                                                    | Р               |
|          | STIB - Brussels public transport network map and schedules    | PDF - GIS<br>Raster              | Brussels     | Société des Transports Intercommu-<br>naux de Bruxelles - STIB/MIVB<br><u>http://www.stib.be/netplan-plan-<br/>reseau.html?l=fr</u>                                        | Р               |

#### Working Paper 2.6: Descriptive and Geographical Data\_\_\_\_

24/06/2010

| Category | Name and description                         | Datatype             | Perimeter | Data owner/ Source<br>Availability                                                                  | Right of<br>use <sup>17</sup> |
|----------|----------------------------------------------|----------------------|-----------|-----------------------------------------------------------------------------------------------------|-------------------------------|
|          | Brussels public transport network - URBIS    | GIS - Vector         | Brussels  | Région de Bruxelles-Capitale<br>http://www.cirb.irisnet.be/site/fr/depart<br>ements/services/urbis/ |                               |
|          | Vectorized rail networks and stations (SNCB) | GIS - Vector;<br>PDF | Belgium   | Institut National Géographique - IGN<br>SNCB<br>http://www.ngi.be<br>www.sncb.be                    |                               |
|          | Vectorized hydrographic networks             | GIS - Vector         | Belgium   | Institut National Géographique - IGN<br>http://www.ngi.be                                           |                               |

\_\_\_\_\_

<sup>&</sup>lt;sup>17</sup> P=public, R=restricted, C=confidential

| Category                      | Name and description                                                   | Datatype                          | Perimeter                   | Data owner/ Source<br>Availability                                                                                                                                         | Right of<br>use |
|-------------------------------|------------------------------------------------------------------------|-----------------------------------|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| RELIEF                        | Relief map (altitude and level lines)                                  | Image                             | Belgium                     | Institut Géographique National - IGN<br>http://www.ngi.be                                                                                                                  |                 |
|                               | Vectorized data (altimetry curves, rating points, geodetic points)     | GIS -<br>Vector                   | Belgium                     | Institut Géographique National - IGN<br>http://www.ngi.be                                                                                                                  |                 |
|                               | Digital Ground Model - DGM (Modèle Numérique de<br>Terrain - MNT)      | GIS -<br>Raster                   | Belgium                     | Institut Géographique National - IGN<br>http://www.ngi.be                                                                                                                  |                 |
| LAND USE<br>AND LAND<br>COVER | CORINE land use maps                                                   | GIS -<br>Raster                   | Europe                      | European Environment Agency - Corine<br>http://dataservice.eea.europa.eu/dataservice/                                                                                      | Р               |
|                               | Land use maps of Belgium - 11 classes                                  | PDF                               | Belgium                     | Région wallonne<br>http://developpement-<br>territorial.wallonie.be/Dwnld/Cartes/sd01.pdf                                                                                  | Р               |
|                               | Land use evolution (changes)                                           | Excel                             | Belgium                     | SPF Economie - STATBEL - SPF Finances<br>http://statbel.fgov.be/fr/binaries/solhist_fr_tcm326-<br>34198.xls                                                                | Р               |
|                               | "Plan Régional de Développement" - PRD<br>General Information and maps | PDF                               | Brussels-<br>Capital Region | Région de Bruxelles-Capitale<br>http://www.prd.irisnet.be/Fr/info.htm                                                                                                      | Р               |
|                               | "Plan Régional d'Affectation du Sol" - PRAS - Prescrip-<br>tions       | PDF                               | Brussels-<br>Capital Region | Région de Bruxelles-Capitale<br>http://www.pras.irisnet.be/PRAS/FR/Frame-menufr.htm                                                                                        | Р               |
|                               | "Plan Régional d'Affectation du Sol" - PRAS - Maps                     | Interactive<br>map; GIS<br>Server | Brussels-<br>Capital Region | Région de Bruxelles-Capitale<br><u>http://geowebas1.ci.irisnet.be/PRASAFFECTATIONFR/vie</u><br><u>wer.htm</u><br><u>http://www.brugis.irisnet.be/brugis/framesetup.asp</u> | Р               |

| Category | Name and description                                                                                                    | Datatype                           | Perimeter      | Data owner/ Source<br>Availability                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Right of<br>use |
|----------|-------------------------------------------------------------------------------------------------------------------------|------------------------------------|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
|          | "Schéma de développement de l'espace régional" -<br>SDER                                                                | lmage;<br>PDF                      | Walloon Region | Région wallonne<br><u>http://developpement-</u><br>territorial.wallonie.be/pages/Quoi.html<br><u>http://developpement-</u><br>territorial.wallonie.be/pages/Cartes.html                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ρ               |
|          | "Plan de Secteur wallon" - PS (Sector plan)                                                                             | GIS -<br>Raster;<br>PDF            | Walloon Region | Direction générale de l'Aménagement du territoire, du Lo-<br>gement et du Patrimoine<br>http://mrw.wallonie.be/dgatlp/dgatlp/pages/Observatoire/Pa<br>ges/DirOHG/Geomatique/PlansSecteurMap.htm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Ρ               |
|          | Interactive map of Walloon sector plan                                                                                  | Interactive<br>map; GIS<br>Serveur | Walloon Region | Portail cartographique de la Région wallonne<br>http://carto6.wallonie.be/WebGIS/viewer.htm?APPNAME=<br>PCA&POPUPBLOCKED=true&BOX=1177,08174904939:1<br>7998,99999999999:338821,918250951:168000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Р               |
|          | Land use maps of Wallonia (Cartes d'Occupation du Sol<br>en Wallonie - COSW)                                            | Interactive<br>map; GIS<br>Serveur | Walloon Region | Portail cartographique de la Région wallonne<br><u>http://cartographie.wallonie.be/NewPortailCarto/index.jsp?p</u><br><u>age=subMenuCOSW&amp;node=32&amp;snode=321#</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ρ               |
|          | "Schémas de Structure Communaux" (SSC) and "Plans<br>Communaux d'Aménagement" (PCA)<br>Land plannings of municipalities | Web; PDF                           | Walloon Region | Région wallonne<br>http://mrw.wallonie.be/DGATLP/DGATLP/Pages/DAU/Pages/DAU/Pages/DAU/Pages/DAU/Pages/DAU/Pages/DAU/Pages/DAU/Pages/DAU/Pages/DAU/Pages/DAU/Pages/DAU/Pages/DAU/Pages/DAU/Pages/DAU/Pages/DAU/Pages/DAU/Pages/DAU/Pages/DAU/Pages/DAU/Pages/DAU/Pages/DAU/Pages/DAU/Pages/DAU/Pages/DAU/Pages/DAU/Pages/DAU/Pages/DAU/Pages/DAU/Pages/DAU/Pages/DAU/Pages/DAU/Pages/DAU/Pages/DAU/Pages/DAU/Pages/DAU/Pages/DAU/Pages/DAU/Pages/DAU/Pages/DAU/Pages/DAU/Pages/DAU/Pages/DAU/Pages/DAU/Pages/DAU/Pages/DAU/Pages/DAU/Pages/DAU/Pages/DAU/Pages/DAU/Pages/DAU/Pages/DAU/Pages/DAU/Pages/DAU/Pages/DAU/Pages/DAU/Pages/DAU/Pages/DAU/Pages/DAU/Pages/DAU/Pages/DAU/Pages/DAU/Pages/DAU/Pages/DAU/Pages/DAU/Pages/DAU/Pages/DAU/Pages/DAU/Pages/DAU/Pages/DAU/Pages/DAU/Pages/DAU/Pages/DAU/Pages/DAU/Pages/DAU/Pages/DAU/Pages/DAU/Pages/DAU/Pages/DAU/Pages/DAU/Pages/DAU/Pages/DAU/Pages/DAU/Pages/DAU/Pages/DAU/Pages/DAU/Pages/DAU/Pages/DAU/Pages/DAU/Pages/DAU/Pages/DAU/Pages/DAU/Pages/DAU/Pag | Р               |
|          | Interactive map of the PCA localisation PCA (+ and other themes)                                                        |                                    | Walloon Region | Région wallonne<br>http://carto6.wallonie.be/WebGIS/viewer.htm?APPNAME=<br>PCA&POPUPBLOCKED=true&BOX=1177,08174904939:1<br>7998,99999999999338821,918250951:168000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Р               |
|          | "Ruimtelijk Structuurplan Vlaanderen" - RSV<br>Land planning of Flanders                                                | PDF                                | Flemish Region | Région flamande<br>http://rsv.vlaanderen.be/nl/overRsv/downloads.html                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Р               |

#### Working Paper 2.6: Descriptive and Geographical Data\_\_\_\_\_

| Category | Name and description                                                                                             | Datatype                | Perimeter      | Data owner/ Source<br>Availability                                                                                                        | Right of<br>use |
|----------|------------------------------------------------------------------------------------------------------------------|-------------------------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
|          | "Gemeente Ruimtelijk Structuurplan" - GRS<br>Land planning of Flemish municipalities                             |                         | Flemish Region | Région flamande<br>http://rsv.vlaanderen.be/nl/overGrs/downloads.html                                                                     | Р               |
|          | "Gewestplannen en Ruimtelijke UitvoeringsPlannen" -<br>RUP<br>Regional planning and spatial implementation plans | Interactive<br>map; PDF | Flemish Region | Région flamande<br>http://rsv.vlaanderen.be/nl/ruimtelijkeordening/GWP_RUP.<br>html<br>http://geo-vlaanderen.agiv.be/geo-vlaanderen/gwp/# | Р               |

| Category                 | Name and description                                                     | Datatype                        | Perimeter | Data owner/ Source<br>Availability                                                                                        | Right of<br>use |
|--------------------------|--------------------------------------------------------------------------|---------------------------------|-----------|---------------------------------------------------------------------------------------------------------------------------|-----------------|
| POPULATION <sup>18</sup> | Total resident population at 1st January of each year                    | Excel                           | Belgium   | SPF Economie - STATBEL<br>http://www.statbel.fgov.be                                                                      | Р               |
|                          | Population statistics                                                    | Excel                           | Belgium   | SPF Economie - STATBEL<br>http://www.statbel.fgov.be                                                                      | Р               |
|                          | Population statistics                                                    | Excel                           | Belgium   | SPF Economie - STATBEL<br>http://www.statbel.fgov.be                                                                      | Р               |
|                          | Private households by household size and number of collective households | Excel                           | Belgium   | SPF Economie - STATBEL<br>http://www.statbel.fgov.be                                                                      | Р               |
|                          | Family nuclei according to the number of children                        | Excel                           | Belgium   | SPF Economie - STATBEL<br>http://www.statbel.fgov.be                                                                      | Ρ               |
|                          | Population forecasts 2007-2060                                           | Excel                           | Belgium   | Bureau fédéral du Plan - BFP<br>http://www.statbel.fgov.be                                                                | Р               |
|                          | Income tax revenues - 2007, incomes 2006                                 | Excel                           | Belgium   | SPF Economie - STATBEL<br>http://www.statbel.fgov.be                                                                      | Р               |
|                          | Survey on household budget                                               | Excel                           | Belgium   | SPF Economie - STATBEL, via FISC<br>http://www.statbel.fgov.be                                                            | Р               |
|                          | Rate of household vehicule ownership                                     | Excel                           | Belgium   | SPF Economie - STATBEL<br>http://www.statbel.fgov.be                                                                      | Р               |
|                          | Living conditions and welfare indicators (EU-SILC)                       | Excel;<br>Web; PC-<br>Axis; CSV | Europe    | Eurostat<br>http://epp.eurostat.ec.europa.eu/portal/page/portal/living_c<br>onditions_and_social_protection/data/database | Р               |
|                          | Health and poverty indicators (EU-SILC)                                  | Excel                           | Brussels  | Brussels-Capital Health and Social Observatory<br>http://www.observatbru.be/documents/indicateurs.xml?lang                | Р               |

<sup>&</sup>lt;sup>18</sup> Free STATBEL statistics exist at communal level. Statistics also exist at the "statistical sector" level, but then they are not free and not directly available from Internet

| Working Paper 2.6: Descriptive and Geographical | l Data | 24/06/2010 |  |
|-------------------------------------------------|--------|------------|--|
|                                                 |        | <u>=en</u> |  |

| Category   | Name and description                                                                                                 | Datatype                     | Perimeter                     | Data owner/ Source<br>Availability                                                                                                                                                                                                                                                                      | Right of<br>use |
|------------|----------------------------------------------------------------------------------------------------------------------|------------------------------|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| EMPLOYMENT | Labour market and social protection datawarehouse                                                                    | Interactive<br>table;<br>CSV | Belgium                       | Banque Carrefour de la Sécurité Sociale - BCSS<br>http://www.ksz-bcss.fgov.be/fr/statistiques/stats_home.htm                                                                                                                                                                                            | Ρ               |
|            | Labour Force Survey (LFS) <i>(Enquête Force du Tra-<br/>vail</i> )                                                   | PDF                          | Belgium                       | SPF Economie - STATBEL<br><u>http://statbel.fgov.be/fr/modules/pressrelease/statistiques/</u><br><u>marche du travail et conditions de vie/enquete force d</u><br><u>e travail communiques et dossiers 2008 - 2009.jsp</u>                                                                              | Р               |
|            | Results of the Labour Force Survey (activity rate, employment, education, employees, hours of work, household jobs,) | Excel                        | Belgium                       | Eurostat <u>http://epp.eurostat.ec.europa.eu/portal/page/portal/employ</u> <u>ment_unemployment_lfs/data/database</u>                                                                                                                                                                                   | Р               |
|            | Evolution of the labour market from 1986 to 2006                                                                     | PDF                          | Belgium                       | SPF Economie - STATBEL<br>http://statbel.fgov.be/fr/binaries/pr094_fr%5B1%5D_tcm32<br>6-65415.pdf                                                                                                                                                                                                       | Р               |
|            | Labour force                                                                                                         | Excel                        | Belgium                       | Région de Bruxelles-Capitale<br><u>http://www.bruxelles.irisnet.be/fr/entreprises/maison/statisti</u><br><u>ques/analyses et statistiques/donnees statistiques them</u><br><u>atiques/population active.shtml</u>                                                                                       | Ρ               |
|            | Gross fixed capital formation                                                                                        | Web                          | Walloon<br>Region;<br>Belgium | Région wallonne - Institut wallon de l'évaluation, de la prospective et de la statistique<br><u>http://statistiques.wallonie.be/dyn/14/article1.ihtml?ID_SITE</u><br>=14&ID_CATEGORIE=247&ID_ARTICLE=421&NOM_CAT<br>EGORIE=0BAH&CAT=1&MODE=MAIN                                                         | Ρ               |
|            | Firms by municipalities                                                                                              | Excel;<br>Web                | Walloon Region                | CAP Ruralité (FSAGx) - Cellule d'Analyse et de Prospec-<br>tive en matière de ruralité de la Région Wallonne<br><u>http://capru.fsagx.ac.be/communes-wallonnes-en-</u><br><u>chiffres?view=all&amp;i ancre=23&amp;depth=2&amp;categorie 1=Econ</u><br><u>omie+et+revenu&amp;categorie 2=Entreprises</u> | Р               |

#### Working Paper 2.6: Descriptive and Geographical Data\_\_\_\_\_

| Number of workers, number of firms and size of firms in each district | Excel | Belgium | Office National de Sécurité Sociale - ONSS<br>http://www.onss.fgov.be/fr/content/statistics/publications/pl<br>ace.html | Р |
|-----------------------------------------------------------------------|-------|---------|-------------------------------------------------------------------------------------------------------------------------|---|
|-----------------------------------------------------------------------|-------|---------|-------------------------------------------------------------------------------------------------------------------------|---|

| Category                  | Name and description                 | Datatype           | Perimeter      | Data owner/ Source<br>Availability                                                                                         | Right of<br>use |
|---------------------------|--------------------------------------|--------------------|----------------|----------------------------------------------------------------------------------------------------------------------------|-----------------|
| EMPLOYMENT<br>(continued) | Firm bankruptcies                    | Excel;<br>PDF; CSV | Belgium        | SPF Economie - STATBEL<br>http://statbel.fgov.be/fr/statistiques/chiffres/economie/entre<br>prises/faillites/ans/index.jsp | Ρ               |
|                           | "Top 150000" of firms                | Web                | Belgium        | TRENDS Tendances (private company) <u>http://www.trendstop.be/</u>                                                         | Ρ               |
|                           | Industry – Leading Walloon companies | Interactive<br>map | Walloon Region | Institut de Conseil et d'Etudes en Développement Durable<br>http://www.icedd.be/atlasenergie/pages/mconfr01.htm            | Р               |

| Category    | Name and description                                                  | Datatype | Perimeter      | Data owner/ Source<br>Availability                                                                                                                                      | Right of<br>use |
|-------------|-----------------------------------------------------------------------|----------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| REAL ESTATE | Real estate sales                                                     | Excel    | Belgium        | SPF Economie - STATBEL<br>http://statbel.fgov.be/fr/binaries/rest2009_fr%5B1%5D_tcm3<br>26-34187.xls                                                                    | Р               |
|             | Past evolution in real estate sales and prices (€ /m²)                | Excel    | Belgium        | SPF Economie - STATBEL<br>http://statbel.fgov.be/fr/modules/publications/statistiques/eco<br>nomie/ventes de biens immobiliers.jsp                                      | Р               |
|             | Renting prices by municipality                                        |          | Belgium        | SPF Economie - STATBEL (Belgian national statistics institute)                                                                                                          | Р               |
|             | Cadastral statistics                                                  | Excel    | Belgium        | SPF Economie - STATBEL<br><u>http://statbel.fgov.be/fr/binaries/cad2008_fr_tcm326-</u><br><u>34175.xls</u>                                                              | Р               |
|             | "Plan de Localisation Informatique" - PLI                             | Web      | Walloon Region | Région wallonne - DGATLP - Division de l'Observatoire de<br>l'Habitat<br><u>http://mrw.wallonie.be/dgatlp/dgatlp/Pages/Observatoire/Pages/DirOHG/Geomatique/PLI.htm</u> | Р               |
|             | Building licences <i>(permis de bâtir)</i> by commune and year        | Excel    | Belgium        | SPF Economie - STATBEL<br><u>http://statbel.fgov.be/fr/binaries/bpe_year_fr%5B1%5D_tcm</u><br><u>326-63050.xls</u>                                                      | Р               |
|             | Building licences detailed by commune and month                       | Excel    | Belgium        | SPF Economie - STATBEL<br>http://statbel.fgov.be/fr/binaries/bpe_month_fr%5B1%5D_tc<br>m326-55958.xls                                                                   | Р               |
| MOBILITY    | Origin-destination matrices for home-to-work and home-to-school trips |          | Belgium        | SPF Economie -STATBEL (Belgian national statistics institute)                                                                                                           | Р               |
|             | Annual and monthly statistics on the vehicles <sup>19</sup>           | Excel    | Belgium        | SPF Mobilité - STATBEL - Service d'Immatriculation de Vé-<br>hicules                                                                                                    | Р               |

<sup>&</sup>lt;sup>19</sup> Some STATBEL data are available online only for 2008 but should also be available for earlier years.

Working Paper 2.6: Descriptive and Geographical Data\_\_\_\_\_

|  |  | http://statbel.fgov.be/fr/modules/publications/statistiques/circ<br>ulation et transport/evolution du parc de vehicules 2009.<br>jsp |  |
|--|--|--------------------------------------------------------------------------------------------------------------------------------------|--|
|--|--|--------------------------------------------------------------------------------------------------------------------------------------|--|

| Category | Name and description                                                                           | Datatype              | Perimeter                  | Data owner/ Source<br>Availability                                                                                                                                                                                                                         | Right of<br>use |
|----------|------------------------------------------------------------------------------------------------|-----------------------|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
|          | Monthly statistics on plate registrations <sup>20</sup>                                        | Excel                 | Belgium                    | SPF Mobilité – STATBEL – Service d'Immatriculation de<br>Véhicules<br>http://statbel.fgov.be/fr/modules/publications/statistiques/circ<br>ulation_et_transport/evolution_du_parc_de_vehicules_2009.<br>jsp                                                 | Р               |
|          | National mobility survey – MOBEL                                                               | PDF;<br>Excel;<br>Web | Belgium                    | SPF Economie STATBEL ; Groupe de Recherche sur les<br>Transports (GRT) - Facultés Universitaires Notre-Dame de<br>la Paix (FUNDP)<br><u>http://www.belspo.be/belspo/home/publ/pub_ostc/mobil/rapp</u><br><u>18syn_fr.pdf</u><br><u>http://www.mobel.be</u> | Ρ               |
|          | BELgian Daily Mobility – BELDAM                                                                |                       | Belgium                    | SPF Mobilité<br>http://www.belspo.be/belspo/fedra/agora/agJJ150_fr.pdf                                                                                                                                                                                     | Р               |
|          | Count of vehicules on highways and national roads, by sense and vehicle type in Walloon Region | PDF;<br>Excel         | Walloon Region             | MET – Région wallonne<br>http://routes.wallonie.be/struct.jsp?chap=2&page=5                                                                                                                                                                                | Р               |
|          | Count of vehicules on highways and national roads, by sense and vehicle type in Flemish Region | PDF;<br>Excel         | Flanders                   | Agentschap Wegen en Verkeer – Region flammande<br>http://www.wegen.vlaanderen.be/documenten/tellingen/                                                                                                                                                     | Р               |
|          | Count of vehicules on principal roads, by sense and vehicle type in Brussels-Capital Region    | Excel                 | Brussels-Capital<br>Region | Bruxelles-Mobilité – Région de Bruxelles-Capitale<br>http://www.bruxellesmobilite.irisnet.be                                                                                                                                                               |                 |
|          | Indicators on transport and mobility of the "BFP"                                              | Excel;<br>Web         | Belgium                    | Bureau fédéral du Plan – BFP<br>http://www.plan.be/databases/database_det.php?lang=fr&T<br>M=30&IS=60&DB=TRANSP&ID=14                                                                                                                                      | Р               |

 $<sup>^{20}</sup>$  Some STATBEL data are available online only for 2008 but should also be available for earlier years.

#### Working Paper 2.6: Descriptive and Geographical Data\_\_\_\_\_ 24/06/2010

| Travel behaviour survey in Flanders | PDF   | Flemish Region | Vlaamse Overheid - Mobiel Vlaanderen – epartment<br>Mobiliteit en Openbare Werken<br><u>http://www.mobielvlaanderen.be/ovg/ovg1.php?a=19&amp;nav=3</u> | Р |
|-------------------------------------|-------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| Mobility statistics of Flanders     | Excel | Belgium        | Vlaamse Regering – Studiedienst<br>http://www4.vlaanderen.be/dar/svr/Cijfers/Pages/Excel.aspx                                                          | Ρ |

| Category        | Name and description                                                 | Datatype | Perimeter                      | Data owner/ Source<br>Availability                                                                                                                                                                              | Right<br>of use |
|-----------------|----------------------------------------------------------------------|----------|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| ACCESSIBILITIES | Zone-to-zone accessibilities expressed in "generalised times"        |          | RER area <sup>21</sup>         | STRATEC                                                                                                                                                                                                         | С               |
| ENVIRONMENT     | Results of surveys on noise pollution due to traffic in Brussels     | PDF      | Brussels-<br>Capital<br>Region | Bruxelles Environnement - Région de Bruxelles-Capitale<br><u>http://documentation.bruxellesenvironnement.be/documents/Bru</u><br><u>1.PDF</u>                                                                   | Ρ               |
|                 | Map of exposure to road traffic noise in Brussels                    | PDF      | Brussels-<br>Capital<br>Region | Bruxelles Environnement - Région de Bruxelles-Capitale<br><u>http://www.bruxellesenvironnement.be/uploadedImages/Site/Par</u><br><u>ticuliers/Theme - Bruit/bruittrafic2001.jpg?langtype=2060</u>               | Ρ               |
|                 | Map of acoustic areas by Lden - Road traffic noise                   | PDF      | Brussels-<br>Capital<br>Region | Bruxelles Environnement - Région de Bruxelles-Capitale<br><u>http://www.bruxellesenvironnement.be/uploadedImages/Site/Partic</u><br><u>liers/Theme_Bruit/zonageacoustique2001.jpg?langtype=2060</u>             | Ρ               |
|                 | Map with the location of road and rail most severe acoustic problems | PDF      | Brussels-<br>Capital<br>Region | Bruxelles Environnement - Région de Bruxelles-Capitale<br><u>http://www.bruxellesenvironnement.be/uploadedImages/Site/Par</u><br><u>ticuliers/Theme</u><br><u>Bruit/carte_points_noirs_fr.jpg?langtype=2060</u> | Ρ               |
|                 | Map of acoustic areas by Lden - Road, rail and air traffic noise     | PDF      | Flemish<br>Region              | LNE - Departement Leefmilieu, Natuur en Energie<br>http://www.lne.be/themas/hinder-en-<br>risicos/geluidshinder/beleid/eu-richtlijn/goedgekeurde-<br>geluidskaarten/goedgekeurde-geluidskaarten                 | Ρ               |

<sup>&</sup>lt;sup>21</sup> area which will be served by the future RER), i.e. the Brussels agglomeration and the surrounding suburban areas

#### Working Paper 2.6: Descriptive and Geographical Data\_\_\_\_\_

| Interactive map of exposure to road traffic noise | Interactive<br>map | Flemish<br>Region        | Agentschap Wegen en Verkeer<br>http://www.wegen.vlaanderen.be/documenten/geluidskaarten/                          | Ρ |
|---------------------------------------------------|--------------------|--------------------------|-------------------------------------------------------------------------------------------------------------------|---|
| Noise exposure study for the airport of Zaventem  | Pdf                | Brussels<br>Airport Zone | Brussels Airport<br>http://www.brusselsairport.be/fr/community/geluid/geluidhinder/g<br>eluidscontouren1#         | Ρ |
| Air quality - Ozone concentrations                | Excel              | Belgium                  | SPF Economie - STATBEL<br>http://statbel.fgov.be/fr/binaries/ozon_tcm326-34200.xls                                | Ρ |
| Atmospheric concentrations and emissions          |                    | Belgium                  | SPF Economie - STATBEL<br>http://statbel.fgov.be/fr/statistiques/chiffres/environnement/air/qu<br>alite/index.jsp | Ρ |

| Category | Name and description                                                                         | Datatype                          | Perimeter      | Data owner/ Source<br>Availability                                                                              | Right of<br>use |
|----------|----------------------------------------------------------------------------------------------|-----------------------------------|----------------|-----------------------------------------------------------------------------------------------------------------|-----------------|
|          | Zones in relation to EU air quality thresholds                                               | GIS -<br>Vector                   | Europe         | European Environment Agency - EEA<br>http://dataservice.eea.europa.eu/dataservice/metadetails.as<br>p?id=1095   | Р               |
|          | Environment and energy indicators                                                            | Excel;<br>Web;<br>PC-Axis;<br>CSV | Europe         | Eurostat<br>http://epp.eurostat.ec.europa.eu/portal/page/portal/statistics/<br>search_database                  | Р               |
| SUMMARY  | Summary "sheet" of municipalities : network, employment, real estate, mobility, environment, | Web;<br>PDF                       | Walloon Region | Région wallonne - Portail Environnement de Wallonie<br>http://environnement.wallonie.be/fiches_enviro/index.htm | Ρ               |

\_\_\_\_

## 7.2 Available data for Zurich case study

| Category                   | Name and description                                                                                                                                                                                                                                                                                                                                                                                      | Entity/Accuracy             | Right<br>of use |
|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-----------------|
| PERIMETERS                 | <b>GG25 municipal borders*</b> : Contains the geometry and location of the administrative boundaries defining the municipalities. Municipalities are a very important spatial unit because a lot of data is aggregated to that level                                                                                                                                                                      | Municipality                | Р               |
| NETWORKS                   | Spatial development plan: Transportation: Political strategy of spatial development in the canton of Zurich concerning aspects of transportation.                                                                                                                                                                                                                                                         | Pixel                       | Р               |
|                            | <b>Zones of model for individual transportation*</b> : Describes geometry and location of the traffic analysis zones in the aggregate individual transport model. Most important attribute further describing the zones is their accessibility.                                                                                                                                                           | Traffic analysis<br>zones   | Ρ               |
|                            | <b>KVM-ZH*</b> : Road network, velocities and distances between traffic analysis zones.                                                                                                                                                                                                                                                                                                                   | Traffic analysis<br>zones   |                 |
|                            | <b>Complete public transportation model</b> : Describes geometry and location of the traffic analysis zones in the aggregate public transport model. Most important attribute further describing the zones is their accessibility.                                                                                                                                                                        | Traffic analysis zones      |                 |
| RELIEF                     | <b>DHM 25*</b> : Digitial terrain model. In a grid of 25m mesh size each point is assigned an x-, y-,and z-value.                                                                                                                                                                                                                                                                                         | Mesh size 25m / 1.5-<br>3 m |                 |
| LAND USE AND<br>LAND COVER | <b>Spatial development plan: settlement and landscape</b> : Political strategy of spatial development in the canton of Zurich concerning settlement and landscape aspects.                                                                                                                                                                                                                                | Pixel                       | Р               |
|                            | <b>Vector 25*</b> : VECTOR25 is the digital landscape model of Switzerland that is based on the topographic map 1:25000. VECTOR25 includes natural and anthropogenic objects and is most suitable for usage in GIS. The topic layers are: road network, railway network, other transport infrastructure, hydrological network, primary areas, buildings, bushes and trees, facilities and single objects. | 3-8 m                       | Р               |
|                            | <b>Data describing hectar gridcells*</b> : For example vacancy rates, number of single family houses, occupied housing units, total number of housing units, vacant housing units, income of natural persons Entity/Accuracy:                                                                                                                                                                             | Municipality                | Р               |
| POPULATION                 | <b>Synthetic population</b> : The synthetic population includes roughly 7 millions of agents. Representing the swiss population.                                                                                                                                                                                                                                                                          | Household                   | Ρ               |
|                            | <b>Tax level legal / natural person</b> : Indexes of the tax level in municipalities in percent to a baseyear.                                                                                                                                                                                                                                                                                            | Municipality                | Р               |
|                            | <b>Net income and expenses of natural persons</b> : Data describes budget and expenses of single households. Surveyed attributes are: telephone subscription, secondary residence, child care, age of person, employment, aggregate expenses, equipment of households. Data from sampling survey. Entity/Accuracy:                                                                                        | Municipality                | Р               |

| Category | Name and description                                                                                                                                                                                                  | Entity/Accuracy                       | Right<br>of use |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-----------------|
|          | <b>Mean of population per municipality</b> (P): Total of population in municipalities for the years 2000 until 2005.                                                                                                  | Municipality                          |                 |
|          | <b>Probabilities of households relocation</b> : Probabilities depending on households attributes.                                                                                                                     |                                       | Р               |
|          | <b>Population forecast Canton of Zurich*</b> : Number of people living in regions, wards and boroughs of canton Zurich. The age structure of the population is also available. Furthermore migration data is at hand. | Regions, wards,<br>boroughs of Zurich |                 |

Г

## 7.3 Available data for Paris case study

|                            | -                                                                                                                                                                                                                                                                                                 |                           |                 |
|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-----------------|
| Category                   | Name and description                                                                                                                                                                                                                                                                              | Entity/Accuracy           | Right<br>of use |
| PERIMETERS                 | GIS representation (ArcGis), administrative limits: A Paris map<br>containing the different administrative limits                                                                                                                                                                                 | departement, municipality | R               |
| NETWORKS                   | Davisum database (matrices): OD (flows) matrices for TC and VP.                                                                                                                                                                                                                                   | 606*606 Zones             | R               |
|                            | Davisum database (matrices): Travel time matrices for TC and VP.                                                                                                                                                                                                                                  | 606*606 Zones             | R               |
|                            | Zoning (TAZ) (R): 606 centroïds.                                                                                                                                                                                                                                                                  | 606 points                | R               |
|                            | <b>Davisum database (Network, TC)</b> : A public transport network composed of 4000 nodes and 5000 links for the whole Paris region. About 400 services (trips) during rush hours (2 hours) for RER, train and metro. Less precise data for buses (within zone more than between zones; see DRE). | Zones (606)               | R               |
|                            | <b>Davisum database (Network, VP)</b> : A road network composed of 5000 nodes and 16 000 links for the whole Paris region.                                                                                                                                                                        | Zones (606)               | R               |
|                            | <b>GIS representation (ArcGis) networks</b> : A Paris map containing the different transport networks. The nodes and links are represented as layers on the lle de France map.                                                                                                                    |                           | R               |
| LAND USE AND<br>LAND COVER | <b>ZAC and ZAE data</b> : Contains information on creations of ZAE and ZAC (can be used to model municipality choices). Should be associated to information on actual projects (in order to estimate other stake holders behaviour).                                                              |                           | R               |
|                            | Land use (MOS) (R): At ilot level, it contains the development type of each cell in 83 posts. It is available in years 1982, 1987, 1990, 1994, 1999 and 2008                                                                                                                                      | llot MOS (520 000)        | R               |
| POPULATION                 | <b>Dwelling survey (Enquête Logement)</b> : It is the principal survey of housing; it contains more than 47000 dwellings. Data on moves (actual and contemplated), housing quality, owner income, expenses associated to the house and others.                                                    | Municipality              | Р               |
|                            | <b>Family Budget Survey</b> : Quality testing of synthetic data (complement to location choice). This table is a French survey; it contains all elements related to the household budget and expenses.                                                                                            | Municipality              | Р               |
|                            | <b>Dwelling survey (Enquête Logement)</b> : It is the principal survey of housing; it contains more than 47000 dwellings. Data on moves (actual and contemplated), housing quality, owner income, expenses associated to the house and others.                                                    | Municipality              | Р               |
|                            | <b>population census</b> : An exhaustive census of the population in the Paris region, located at parcel (IRIS) and municipality levels. It contains demographic, spatial, social and economic variables.                                                                                         | Municipality              | Р               |
| EMPLOYMENT                 | <b>Regional Employment Survey (ERE) 1997 &amp; 2001</b> : Exhaustive database of all firms and plants: detailed sector, number of employees and location (municipality level for all firms and plants in 1997, parcel level for some plants in 2001).                                             | Municipality              | R               |
| REAL ESTATE                | <b>Dwelling and offices prices (Cote Callon)</b> : This table contains prices of m <sup>2</sup> of a real estate in some cities of the whole France.                                                                                                                                              | Municipality              | Р               |
|                            | <b>Notaries' Database</b> : It contains aggregate data on transactions (nb transactions & average prices) of housing sales in Paris region.                                                                                                                                                       | Municipality              | Р               |