METROPOLIS: an Applied Dynamic Discrete-Choice Transport Network Model

Fabrice Marchal¹

¹AXONACTIVE AG

METROPOLIS Users Meeting 2010 - ETHZ

Part I: Dynamic congestion models Part II: METROPOLIS: a tutorial

Outline of Part I

F. Marchal (AxonActive) METROPOLIS - Theory and Tutorial

・ロン ・回 と ・ ヨン ・ ヨン

Part I: Dynamic congestion models Part II: METROPOLIS: a tutorial

Outline of Part I

Motivations

2 Modelling

- Demand side departure time choice
- Supply side linear bottleneck
- Equilibrium
- System optimum
- Day-to-day adjustment process

イロト イヨト イヨト イヨト

Part I: Dynamic congestion models Part II: METROPOLIS: a tutorial

Outline of Part II (Fabrice Marchal)

3 Design philosophy of METROPOLIS

F. Marchal (AxonActive) METROPOLIS - Theory and Tutorial

・ロン ・回と ・ヨン・

Outlines Par

Part I: Dynamic congestion models Part II: METROPOLIS: a tutorial

Outline of Part II (Fabrice Marchal)

- 3 Design philosophy of METROPOLIS
- 🕘 Data issues
 - Demand static O-D matrices and parameters
 - Network parameters

◆□ > ◆□ > ◆臣 > ◆臣 > ○

-2

Outline of Part II (Fabrice Marchal)

- 3 Design philosophy of METROPOLIS
- 🕘 Data issues
 - Demand static O-D matrices and parameters
 - Network parameters
- 5 Simulation isssues
 - Convergence properties
 - Peak and off-peak demand

イロト イヨト イヨト イヨト

Outline of Part II (Fabrice Marchal)

- 3 Design philosophy of METROPOLIS
- 4 Data issues
 - Demand static O-D matrices and parameters
 - Network parameters
- 5 Simulation isssues
 - Convergence properties
 - Peak and off-peak demand
- 6 Application of public policies
 - Road pricing
 - Peak spread measures
 - Capacity expansion
 - Varying levels of demand

- 4 同 ト 4 臣 ト 4 臣 ト

Outline of Part II (Fabrice Marchal)

- 3 Design philosophy of METROPOLIS
- 🕘 Data issues
 - Demand static O-D matrices and parameters
 - Network parameters
- 5 Simulation isssues
 - Convergence properties
 - Peak and off-peak demand
- 6 Application of public policies
 - Road pricing
 - Peak spread measures
 - Capacity expansion
 - Varying levels of demand

7 FAQs

- 4 同 ト 4 臣 ト 4 臣 ト

Part I

Dynamic congestion models

F. Marchal (AxonActive) METROPOLIS - Theory and Tutorial

・ロト ・回ト ・ヨト ・ヨト

Focus

Transp. systems

- Public transport
- Private modes
 - Car traffic

・ロ・ ・ 日・ ・ 日・ ・ 日・

Focus

Transp. systems

- Public transport
- Private modes
 - Car traffic

Reasons for time-dependent models

- Innovative policies
- Technology (ITS)

Time-dependent context

A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A
 A

< ∃ >

Time-dependent context

イロト イヨト イヨト イヨト

Demand side - departure time choice Supply side - linear bottleneck Equilibrium System optimum Day-to-day

Travel choices considered

- Mode choice
- Route choice
- Departure time choice

◆□ > ◆□ > ◆臣 > ◆臣 > ○

Demand side - departure time choice Supply side - linear bottleneck Equilibrium System optimum Day-to-day

Departure time choice - Vickrey's model (1969)

Cost specification:

$$C(t_d) = \alpha \tau(t_d) + \beta \max\{0, t^* - t_a(t_d)\} + \gamma \max\{0, t_a(t_d) - t^*\}$$

- departure time: t_d
- travel time: $\tau(t_d)$
- arrival time: $t_a(t_d) = t_d + \tau(t_d)$
- α: monetary value of time
- β, γ : penalties for early/late arrivals
- t*: desired arrival time

イロト イヨト イヨト イヨト

Demand side - departure time choice Supply side - linear bottleneck Equilibrium System optimum Day-to-day

Trade-off between travel time and schedule delay costs

F. Marchal (AxonActive) METROPOLIS - Theory and Tutorial

Demand side - departure time choice Supply side - linear bottleneck Equilibrium System optimum Day-to-day

Trade-off between travel time and schedule delay costs

F. Marchal (AxonActive) METROPOLIS - Theory and Tutorial

Demand side - departure time choice Supply side - linear bottleneck Equilibrium System optimum Day-to-day

Trade-off between travel time and schedule delay costs

F. Marchal (AxonActive) METROPOLIS - Theory and Tutorial

Demand side - departure time choice Supply side - linear bottleneck Equilibrium System optimum Day-to-day

Typical parameter values

Linear estimations

	β [\$/h]	γ [\$/h]	t^*	μ [\$]
Com. (Paris/close)	6.0	7.5	N(08:30,60)	2.7
Com. (far suburbs)	8.3	17.4	N(08:24,50)	1.7
Other purposes	5.2	10.6	N(08:54,54)	2.4
			N(10:49,53)	

(value of time from external sources: $\alpha = 13$ \$/*h*; sources: MADDIF, estimations on Paris area)

Non-linear estimations

・ロト ・回ト ・ヨト ・ヨト

Demand side - departure time choice Supply side - linear bottleneck Equilibrium System optimum Day-to-day

・ロン ・回と ・ヨン ・ヨン

-2

Linear queue for a single O-D pair

Congestion:

$$\tau(t_d) = \frac{Q(t_d)}{\kappa}$$

Dynamics:

$$\frac{dQ}{dt} = r(t) - \kappa \text{ if } Q > 0$$

- N: total number of users
- κ : road capacity
- r(t): entry flow

Demand side - departure time choice Supply side - linear bottleneck Equilibrium System optimum Day-to-day

Taking spill-over effects into account

Extension: space limitations and blocking back

イロト イヨト イヨト イヨト

Demand side - departure time choice Supply side - linear bottleneck Equilibrium System optimum Day-to-day

Equilibrium - deterministic case

- Cournot-Nash equilibrium condition: $\frac{dC}{dt} = 0$
- individual cost at eq.:

$$C^{eq} = \frac{N}{\kappa} \frac{\beta \gamma}{\beta + \gamma}$$

- departure rate: $r(t) = \kappa \frac{\alpha}{\alpha \beta}$ (early), $r(t) = \kappa \frac{\alpha}{\alpha + \gamma}$ (late)
- independent of value of time (α)
- schedule delay costs = half of travel cost
- externality = individual cost

・ロン ・回と ・ヨン ・ヨン

Demand side - departure time choice Supply side - linear bottleneck Equilibrium System optimum Day-to-day

System(social) optimum

• condition:

$$r^{so} = \arg\min_{r(t)} C_{TOTAL}$$

$$C_{TOTAL} = \int_{-\infty}^{+\infty} C(t) dt$$

• solution:

$$r^{so}(t) = \kappa$$
 if $t \in T$

• total cost at sys. optimum:

$$C_{TOTAL}^{so} = \frac{NC^{eq}}{2}$$

◆□ > ◆□ > ◆ □ > ◆ □ > ●

Demand side - departure time choice Supply side - linear bottleneck Equilibrium System optimum Day-to-day

Equilibrium and sys. optimum departure rates

・ロト ・回ト ・ヨト ・ヨト

Demand side - departure time choice Supply side - linear bottleneck Equilibrium System optimum Day-to-day

Day-to-day adjustment process

Extension: general networks , heterogenous demand

- no closed form available for the equilibrium
- heuristics procedures to adjust decisions iteratively (departure/route/mode)
- for instance, inspired by R.U.M.: $U(t_d) = -C(t_d) + \mu \epsilon_{t_d}$

• If
$$\epsilon_{t_d}$$
 are assumed Gumbel i.i.d \rightarrow logit:
 $\mathcal{P}(t < t_d \leq t + \Delta t) = \frac{\Delta t \exp\left(\frac{-C(t)}{\mu}\right)}{\int_T \exp\left(\frac{-C(t)}{\mu}\right) du}$
• $\tau_H^{k+1}(t) = \lambda \tau_H^k(t) + (1 - \lambda) \tau_S^k(t)$

<ロ> <同> <同> <巨> <巨> <

Demand side - departure time choice Supply side - linear bottleneck Equilibrium System optimum Day-to-day

Logit adjustment - instabilities - case $\lambda = 0$

F. Marchal (AxonActive)

METROPOLIS - Theory and Tutorial

Demand side - departure time choice Supply side - linear bottleneck Equilibrium System optimum Day-to-day

Logit adjustment - instabilities - case $\lambda = 0.9$

F. Marchal (AxonActive)

METROPOLIS - Theory and Tutorial

Design philosophy of METROPOLIS Data issues Simulation Application FAQs

Part II

METROPOLIS: a tutorial

F. Marchal (AxonActive) METROPOLIS - Theory and Tutorial

・ロン ・回 と ・ ヨン ・ ヨン

æ

Design philosophy of METROPOLIS

Data issues Simulation Application FAQs

Design philosophy

F. Marchal (AxonActive) METROPOLIS - Theory and Tutorial

・ロン ・回 と ・ ヨ と ・ ヨ と

Design philosophy of METROPOLIS Data issues Simulation Application FAQs

Demand Network

- 4 Data issues
 - Demand static O-D matrices and parameters
 - Network parameters
- 5 Simulation isssues
 - Convergence properties
 - Peak and off-peak demand
- 6 Application of public policies
 - Road pricing
 - Peak spread measures
 - Capacity expansion
 - Varying levels of demand
- 7 FAQs

- 4 回 2 - 4 □ 2 - 4 □

Design philosophy of METROPOLIS

Data issues

Simulation Application FAQs Demand

Demand

F. Marchal (AxonActive) METROPOLIS - Theory and Tutorial

・ロン ・回 と ・ ヨン ・ ヨン

æ

Design philosophy of METROPOLIS

Data issues Simulation

Simulation Application FAQs Network

Network

F. Marchal (AxonActive) METROPOLIS - Theory and Tutorial

・ロン ・回 と ・ ヨン ・ ヨン

æ

Design philosophy of METROPOLIS Data issues Simulation Application FAQs

Convergence Travel purposes

- 3 Design philosophy of METROPOLIS
- 4 Data issues
 - Demand static O-D matrices and parameters
 - Network parameters
- **5** Simulation isssues
 - Convergence properties
 - Peak and off-peak demand
- 6 Application of public policies
 - Road pricing
 - Peak spread measures
 - Capacity expansion
 - Varying levels of demand
- 7 FAQs

(4回) (日) (日)

Design philosophy of METROPOLIS Data issues

Simulation

Convergence Travel purposes Application FAQs

Convergence

F. Marchal (AxonActive) **METROPOLIS** - Theory and Tutorial

・ロン ・回 と ・ ヨン ・ ヨン

æ

Design philosophy of METROPOLIS Data issues Simulation Application FAQs

Convergence Travel purposes

Travel purposes - peak/off-peak

F. Marchal (AxonActive) METROPOLIS - Theory and Tutorial

◆□ > ◆□ > ◆臣 > ◆臣 > ○

Design philosophy of METROPOLIS Data issues Simulation Application FAQs

Road pricing Peak spread measures Capacity expansion Varying levels of demand

4 Data issues

- Demand static O-D matrices and parameters
- Network parameters
- 5 Simulation isssues
 - Convergence properties
 - Peak and off-peak demand
- 6 Application of public policies
 - Road pricing
 - Peak spread measures
 - Capacity expansion
 - Varying levels of demand

イロト イヨト イヨト イヨト

Design philosophy of METROPOLIS Data issues Simulation Application FAOs

Road pricing Peak spread measures Capacity expansion Varying levels of demand

Road pricing

F. Marchal (AxonActive) METROPOLIS - Theory and Tutorial

・ロン ・回 と ・ ヨン ・ ヨン

Design philosophy of METROPOLIS Data issues Simulation Application FAQs

Road pricing Peak spread measures Capacity expansion Varying levels of demand

Peak spread measures

F. Marchal (AxonActive) METROPOLIS - Theory and Tutorial

・ロン ・回 と ・ ヨン ・ ヨン

Design philosophy of METROPOLIS Data issues Simulation Application FAOs

Road pricing Peak spread measures Capacity expansion Varying levels of demand

Capacity expansion

F. Marchal (AxonActive) METROPOLIS - Theory and Tutorial

・ロン ・回 と ・ ヨン ・ ヨン

Design philosophy of METROPOLIS Data issues Simulation Application FAOs

Road pricing Peak spread measures Capacity expansion Varying levels of demand

Varying level of demand

F. Marchal (AxonActive) METROPOLIS - Theory and Tutorial

・ロン ・回 と ・ ヨン ・ ヨン

Design philosophy of METROPOLIS Data issues Simulation Application FAQs

Questions

F. Marchal (AxonActive) METROPOLIS - Theory and Tutorial

・ロン ・回 と ・ ヨ と ・ ヨ と

æ