

Applying UrbanSim to the Greater Paris Region A road map for future innovations

Nicolas Coulombel

ENS Cachan - LVMT

⊠: <u>nicolas.coulombel@ens-cachan.fr</u>

European research project started this year

Aims at substantial theoretical/practical improvements

Ultimate goal : developing a version of UrbanSim befitting the European context, UrbanSimE

3 case study

- Brussels (STRATEC, ETHZ,...)
- Paris (ENS-Cachan, UCP-Thema, ...)
- Zurich (ETHZ, ...)

BACKGROUND: THE SIMAURIF PROJECT

French research project from 2003 to 2007

- calibration of UrbanSim for the Greater Paris Region (Île-de-France)
 - version 2.0 : gridcells of 500*500m
 - calibration between years 1990 and 1999
- application to the economic assessment of the Tangentielle Nord, a circular transit project in the north of the Paris area

Main difficulties faced by the team

- gridcells are not consistent at all with French data
- learning and calibrating UrbanSim is a lengthy process, especially more so if having to switch to a newer version

OBJECTIVE : 4 MAJOR INNOVATIONS

- 1. A micro-macro demographic model
- 2. Better representation of the decision process at the household level
- 3. Finding a relevant system of zones

4. A better integration with the transportation model

Introduction

PARTI

The demographic model

INDIVIDUAL EVENTS TO BE MODELED

- Leaving parental home
- Cohabitation
- Marriage (or remarriage)
- Separation / divorce
- Live in a communal establishment (or not)
- Having a child
- Death

A MODULE EXAMPLE : HOUSEHOLD FORMATION

Household formation

- Cohabitation
- Marriage

Household dissolution

- Widowhood
- Divorce
- Dissolution

Equations for each event

- separation=f(X,β)
 - X : time dependent covariates (age, child) or not (gender)
 - β : parameters

Source : Pennec, S. & Bacon B. (2008)

Introduction

The demographic model

Collective decision-making

- Closed, discrete time model (step =1 year)
- Women driven (cohabitation, children, separation) Partner matching

Identification of father, mother, partner, household

- a new household identification number is given to each man and each woman when they leave parental home
- women keep this number all through the simulation

Immigration

Order of events

Introduction

Collective decision-making

PARI 2

Toward a better representation of the decision process

COLLECTIVE DECISION-MAKING WITHIN COUPLES: BASIC MODEL

Objectives, preferences, constraints may differ between husband/wife

- Two decision-makers ⇒ unitary models irrelevant but one can assume more cooperation than usually assumed in, e.g., labor market
- Collective models developed by Pierre-André Chiappori: Pareto-optimal decisions; no restrictions on decision process
 - Chiappori, P.,-A. (1988) : "Rational household labor supply," Econometrica, 56(1), 63-90
 - Chiappori, P.,-A. (1992) : "Collective Labor Supply and Welfare", Journal of Political Economy, 100, 437-467

RESEARCH ON COUPLE RESIDENTIAL LOCATION AND SPOUSES WORKPLACES

- Job opportunities are fairly different for husband and wife within a family (despite assortative mating)
 - compute (expected) travel times specific to gender, age, education, profession, and (endogenous?) mode
 - is chosen HH location Pareto-optimal?
 - relative bargaining powers measured by respective influence of male/female accessibilities

Short run/Long run bargaining power and nest order

- short run \rightarrow distance to current job; Nest Workplace \rightarrow Residence
- o long run → accessibility to jobs; Nest Residence → Workplace, forward-looking

Introduction

PARTB

Toward a multiscale model

4 INTERTWINED GEOGRAPHIC LAYERS

llôts-MOS

very fine geographic level
used for land-use data

llôts (52027)

 quite detailed geographic level for Census data

Communes (1300)

 relevant level for employment data in lowdensity areas

TAZ (1289)

Introduction

Collective decision-making

Toward a multi-scale model

000

LEVEL OF OPERATION FOR EACH MODEL

Residential location model

Nested choice: Commune (or set of Communes), Ilôt

Job location model

- A minima: Commune
- If possible: ilôt for dense areas (only)

Real estate price model

• *llôt* or Commune depending on available data

Land development model

Ilôt-MOS (preferably)

COPING WITH A COMPLEX SYSTEM OF ZONES

« Inclusion » relationships :

- Ilôt-MOS \subset TAZ & Commune (to be confirmed)
- Ilôt ⊂ TAZ & Commune
- $_{\circ}~$ in most cases, TAZ \subset Commune or Commune \subset TAZ
- $_{\circ}~$ in most cases, llôt-MOS \sub llôt

Main foreseeable issues

- defining neighborhood for *llôt-MOS* and *llôts* (strong size heterogeneity)
- each model uses variables from other models which might be located at differing scales
 - Household location model uses job accessibility measures
 - Land development model operates at *llôt-MOS* level and should provide new housing supply at *llôt* level.

Introduction	
000	

PART4

Toward a multiscale model

INTERACTION BETWEEN URBANSIM AND THE TRANSPORT MODEL

Transport model to UrbanSim

- the transport model feeds UrbanSim with travel times
- no particular issue

UrbanSim to transport model : 3 possibilities

- feed the transport model with zonal aggregates of jobs and population then perform the first two of the 4 steps (generation and distribution) \Rightarrow significant loss of information
- use information on workplace at the individual level to generate an activity schedule and infer travel behavior : MATSIM

Introduction

LOOKING FOR A "MIDDLE PATH"

Information available in UrbanSim

- population
- o jobs
- workplace for employed individuals

The middle way

- using workplace information to generate a morning (evening) home-work O-D matrix
- complete this matrix with standard generation-distribution procedures for other purposes