UrbanSim User Meeting, ETH Zurich, 17-18 May 2010

Simulating household location choice at different geographical levels with UrbanSim

Laboratory of Transport Economics (LET) (CNRS, University of Lyon, ENTPE)

> Marko Kryvobokov, Dominique Bouf Nicolas Ovtracht, Pierre-Yves Péguy Alain Bonnafous

Contents

- 1. The aim of the study
- 2. The Lyon UrbanSim application
- 3. Model estimation
- 4. Model simulation
- 5. Evenly split population growth
- 6. Conclusion
- 7. Questions

The UrbanSim dilemma:

- need for disaggregate data (Hunt *et al.*, 2005; Duthie *et al.*, 2007)
- need to apply a powerful modelling potential

Zone-based approach:

- zone version of UrbanSim might be helpful?
- application at the zonal level: the Paris Region (de Palma et al., 2005; de Palma et al., 2007)?

Which zone level is appropriate in the Lyon application:

- ILOT (block)?
- IRIS (TAZ)?
- commune (municipality)?

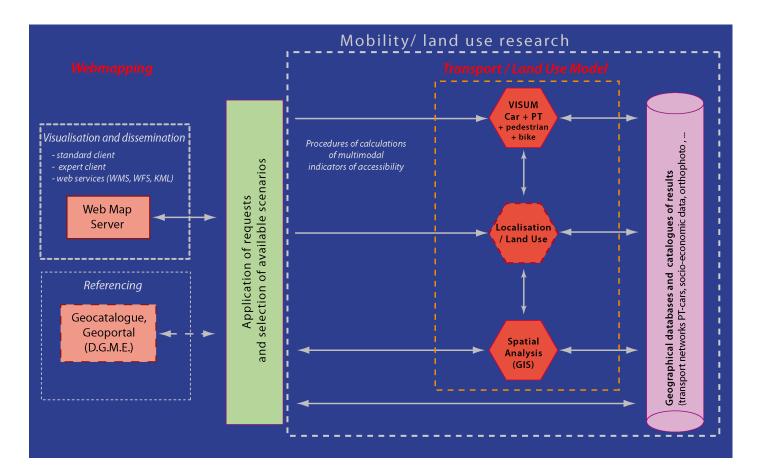
Motivation – unsatisfactory prediction results with ILOTs

Reasonableness of simulation results given historical data (Waddell, 2002, Waddell *et al.*, 2007):

- overall correlation between simulated and actual values
- differences between simulated and actual change by spatial unit

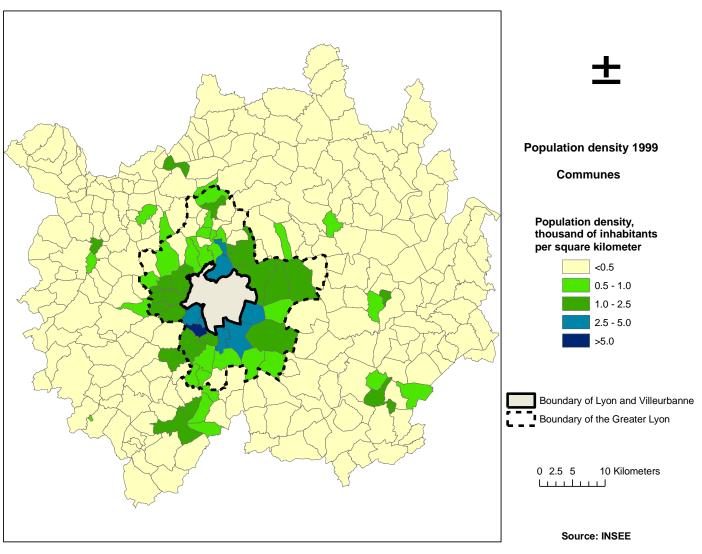
Additional benchmark for the HLCM (the alternative method) – evenly split population growth

Criterion for an appropriate spatial unit:


- predictions are closer to actual values in comparison with other spatial units
- predictions are better than the alternative method for this spatial unit

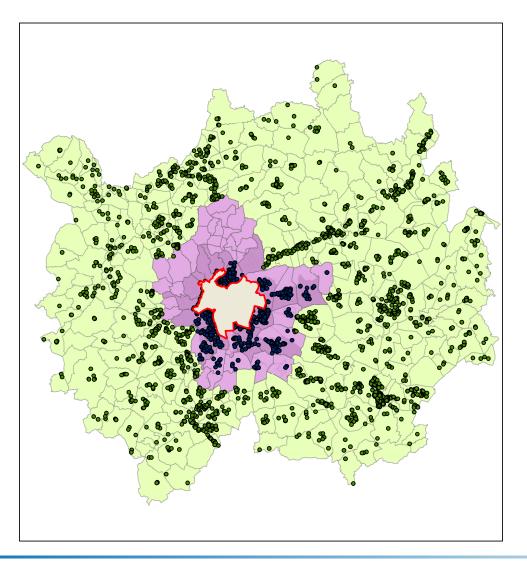
- Project PLAINSUDD (Innovative Numerical Platforms of Urban Simulation for Sustainable Development) sponsored through French ANR
- Numerical platform MOSART (Modelling and Simulation of Accessibility to Networks and Territories): data, perspective building of a transportation-land use model

MOSART: Numerical Platform of Modelling



- version 4.2.2 (GUI)
- framework created for gridcells
- gridcell size 100 m * 100 m
- each spatial unit is analysed as one "gridcell"
- "gridcells" are located in centroids of spatial units
- irregular network of "gridcells"

Attribute	ILOT	IRIS	Commune	
Territory covered	The Greater Lyon	The Lyon Urban Area	The Lyon Urban Area	
Total number of spatial units	5,296	743	304	Commune
Number of spatial units with dwellings	4,662	742	304	IRIS
Area, km ² : Minimum Maximum Mean Std. dev.	0.00002 14.14738 0.09272 0.54107	0.01280 39.99089 4.47694 6.36776	0.40235 39.99089 10.94199 6.52716	ILOT
Population 1999: Minimum Maximum Mean Std. dev.	0 7,951 210 422	1 7,960 2,124 1,288	96 116,653 5,184 12,033	


Households:

- population 1999: 1.58 million
- population 2005: 1.74 million
- 3 income groups
- number of cars
- annual relocation rate for household: 0.076

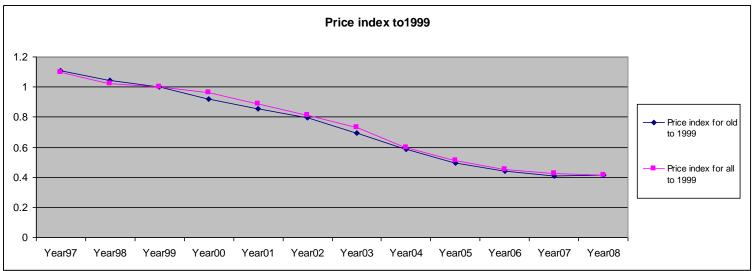
TAZs or communes:

- travel time by car, morning peak (O-D matrix)
- number of residential units
- average real estate price per square metre

<u>+</u>

- apartment prices
- housing prices

0 2.5 5 10 Kilometers



Real estate prices:

- data: sales 1997-2008
- hedonic model for old apartments, Péguy (3100 observations, 41 variables, adj. R²=0.82)
- hedonic model for all apartments, Kryvobokov (4308 observations, 43 variables, adj. R²=0.88)
- amalgamate apartments and houses: 11407 observations
- recalculate prices to 1999
- interpolate to raster, zonal statistics

3. Model estimation

HLCM:

- synthetic population
- 10,000 randomly selected households
- 1 + 29 alternatives

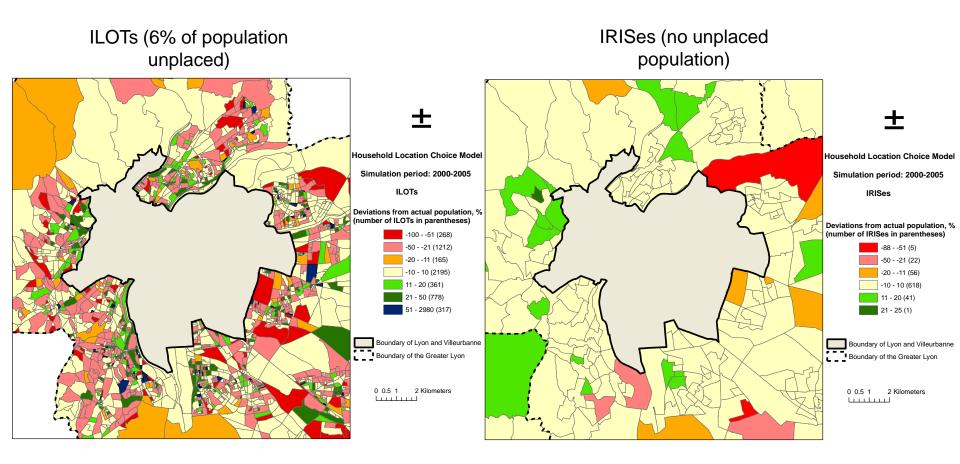
Selection of variables:

- parsimonious model
- based on fundamentals of urban theory
- avoid the "within walking distance" concept
- avoid scale variables

3. Model estimation

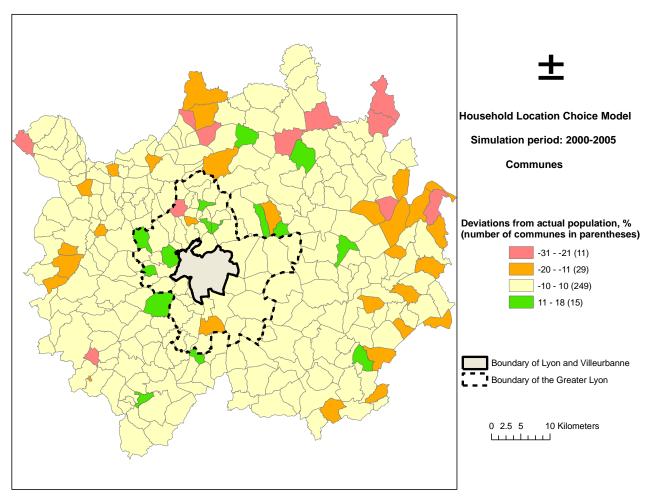
Number	Variable	Coefficient (<i>t-value</i>)			
Number	variable	ILOT	IRIS	Commune	
1	Log of average real estate price if high income household	0.505 (8.59)	0.526 (9.66)	0.247 (3.94)	
2	Log of average real estate price if middle income household	0.138 (5.36)	0.127 (4.93)	-0.284 (-9.01)	
3	Log of average real estate price if low income household	-0.338 (-9.96)	-0.638 (-18.59)	-0.973 (-20.56)	
4	Log of residential vacancy rate	0.016 (4.24)	-0.144 (-18.62)	0.165 (17.31)	
5	Log of index of employment access if household has a car	-0.599 (-32.53)	-0.310 (-23.67)	0.434 (29.54)	
6	Log of index of employment access if household does not have a car	0.969 (28.93)	1.491 (53.64)	2.227 (68.97)	
Null log-lik	elihood	-168400.085	-225244.297	-225244.297	
Log-likelihe	bod	-167289.676	-222899.831	-220769.638	
Likelihood	Likelihood ratio test		4688.932	8949.318	
Number of observations		49512	66225	66225	
Number of	location choices	4662	742	304	

Base year: 1999


Simulation period: 2000-2005

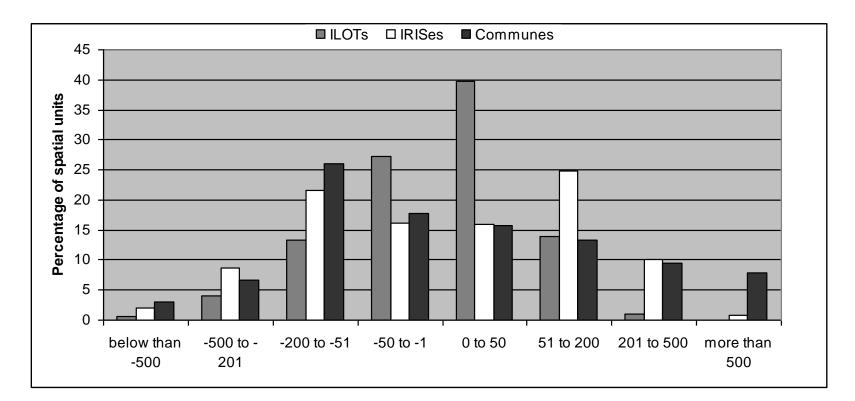
Year for comparison: 2005

No new real estate development



Deviations from actual population 2005

Deviations from actual population 2005, communes


Analysis of simulated population 2005

	ILOT					
Parameter	ILOT	Aggregation to IRIS	Aggregation to commune	IRIS	Commune	
Correlation coefficient	0.972	0.946	0.995	0.990	0.999	
Within ±5% of actual population*	19 (36)	27 (25)	13 (24)	60 (57)	63 (54)	
Within $\pm 10\%$ of actual population*	31 (41)	44 (41)	67 (52)	87 (83)	93 (82)	
Within ±20% of actual population*	50 (51)	83 (79)	97 (86)	99 (96)	>99 (96)	
<i>Moran's I</i> for difference	0.04	0.30	0.12	0.19	0.12	
<i>Moran's I</i> for deviation	0.03	0.24	0.24	0.16	0.17	

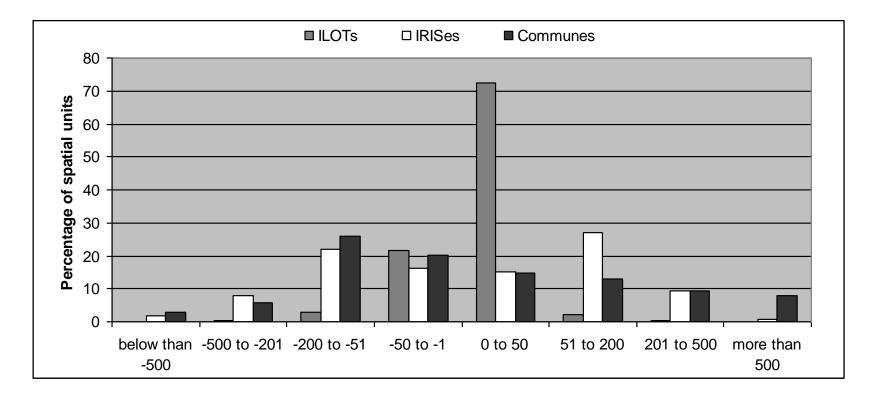
* Percentage of population and percentage of spatial units (in parentheses) are presented

Differences between simulated and actual population 2005 by spatial unit (the same interval as in Waddell, 2002)

5. Evenly split population growth

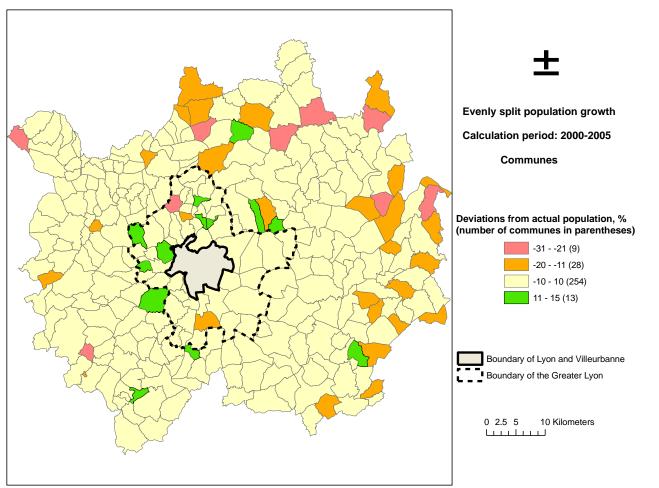
Population increase with average growth rate in each spatial unit

Parameters	ILOT	IRIS	Commune
Correlation coefficient	0.993	0.991	0.999
Within $\pm 5\%$ of actual population*	66 (82)	60 (57)	63 (53)
Within $\pm 10\%$ of actual population*	88 (93)	88 (84)	94 (84)
Within ±20% of actual population*	96 (97)	99 (97)	>99 (97)
Moran's I for difference	0.01	0.18	0.08
Moran's I for deviation	0.04	0.16	0.18


Analysis of calculated population 2005

* Percent of population and percent of spatial units (in parentheses) are presented

5. Evenly split population growth


Differences between calculated and actual population 2005 by spatial unit

5. Evenly split population growth

Deviations from actual population 2005, communes

6. Conclusion

With larger spatial units the predictability of the HLCM gradually improves:

- multinomial logit works better with less alternatives
- data (disaggregation) errors and prediction errors are compensated

However at the lower spatial level spatial autocorrelation is lower

6. Conclusion

The criterion for an appropriate spatial unit:

- not satisfied for ILOT
- close to being satisfied for IRIS and commune

The best prediction is obtained with commune

Spatial distribution of predicted population is in line with an even population increase, there are no extreme differences in the centre

7. Questions

Methodological:

- How to measure multicollinearity in MNL model?
- In a zone model, is a number of observations sufficient for regression (the LPM, the REPM, the RLSM)?
- Is the Paris Region model in de Palma et al. (2005) a zonebased? The commune level is mentioned (1300 communes). What about gridcells?

7. Questions

Technical:

- How to work with scenarios?
- How to save the list of variables in a model for a consequent estimation?
- Is it worth switching to a zone model?
- If we use 4.2.2 GUI and want to try a zone model, do we need some additional installations?
- There are the zone .xml files (for Eugene, PSRC, and Durham) in https://svn.urbansim.org/project_configs/, but we do not see the zone data (in particular, pseudo_buildings table) neither in https://svn.urbansim.org/data/, nor in the file opus-4-2-2.zip at http://www.urbansim.org/data/ nor in the file opus-4-2-2.zip at http://www.urbansim.org/Download/DownloadingSampleDataA ndSourceCode. Where the zone data can be found?
- How to work with a household synthesizer with non-US data?

