ETH Zürich

Sustainable urban-rural systems and Future Cities

Prof Dr Gerhard Schmitt

Sustainable urban-rural systems

Motivation and Definitions Urban-Rural Systems Future Cities Laboratory Simulation Platform Scales: Space and time Small, Medium, Large Short term, Mid-Term, Long-Term

- Conclusions

Sustainable urban-rural systems

Content

Motivation

Switzerland – an urban-rural Future City? Architecture for the Knowledge Society Urbanization on the strategic agenda

Urban-Rural System Switzerland: Former peat production area near Zurich

Urban-Rural System Switzerland: Electricity producing storage lake near Zürich

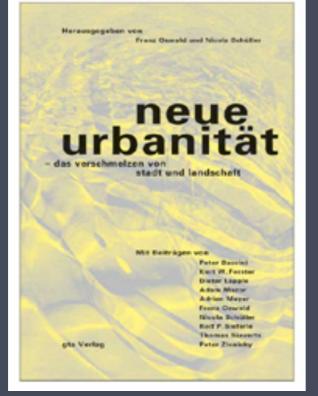
Urban-Rural System Ethiopia: Transformation space Addis Ababa

Urban System Singapore

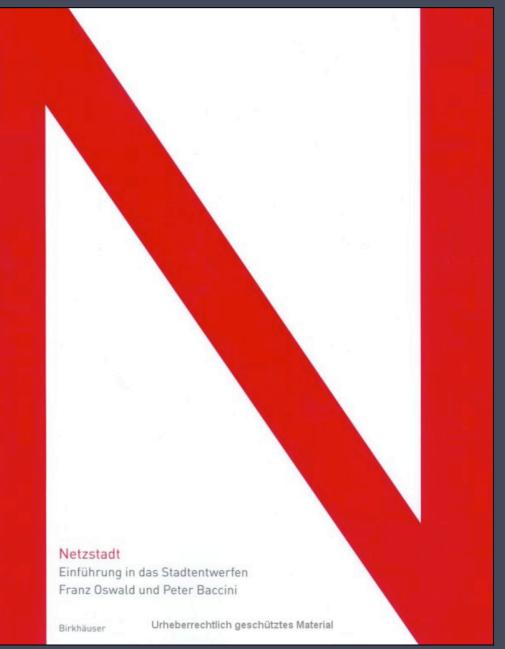
Future Cities Laboratory

A new model for trans-disciplinary and transnational research in Design Science

Sustainable Zürich 2110? Copyright @iA

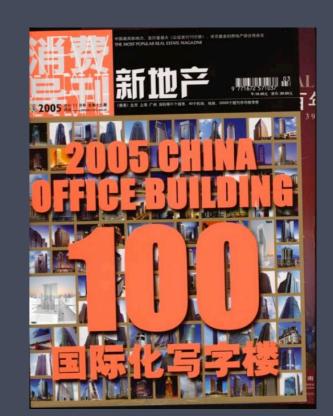

ETH Principal Investigators and Singapore Partners

- Prof. Franz Oswald, PL Singapore: Urban Networks (Switzerland, USA, ETHiopia)
- Prof. Kees Christiaanse: PL CH, City Planning (Amsterdam, London, Zürich, Shenyang China)
- Prof. Dr. Kai Axhausen: Transportation and Mobility
- Prof. Christophe Girot: Landscape and Water (France, USA, Switzerland)
- Prof. Dr. Armin Grün: Photogrammetry
- Prof. Dr. Gerhard Schmitt: Urban Simulation, Director SEC
- Prof. Fabio Gramazio/Matthias Kohler: Digital Chain
- Leading researchers from ETH, NUS and NTU



ETH SEC CORE TEAM FRANZ OSWALD

New Urbanity, 2003

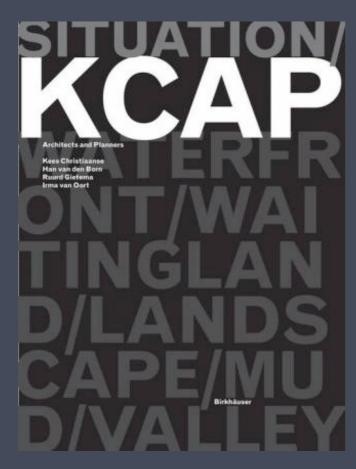

URBAN PLANNING TEXTBOOK: Netzstadt, Designing the Urban, 2003

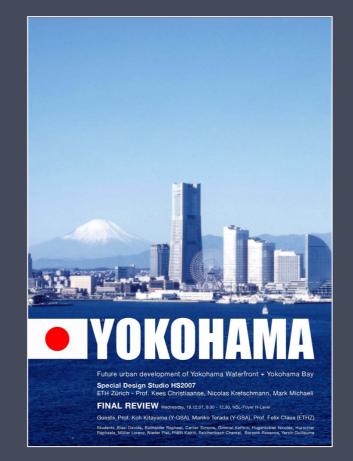
ETH SEC CORE TEAM MARC ANGÉLIL

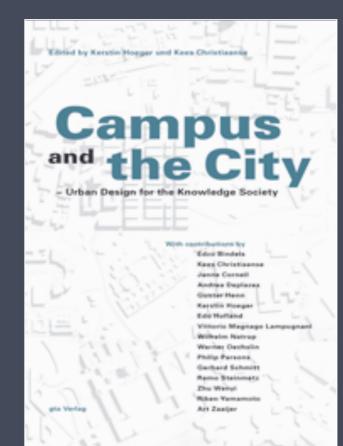
Nanjing IPC Building, Nanjing

URBAN INFRASTRUCTURE Portland Aerial Tram, Portland, USA

URBAN INFRASTRUCTURE International Terminal, Zurich Airport, Zurich




ETH SEC EXPERT TEAM KEES CHRISTIAANSE

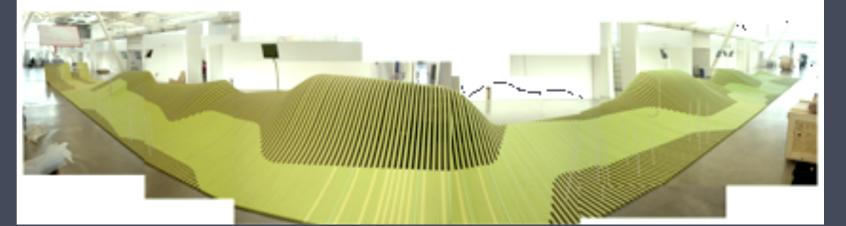

HIGH DENSITY HOUSING: Fountainhead, Amsterdam, 1999

Monograph of urban planning and design work

Research Studios Urban Design, 2007

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

ETH SEC EXPERT TEAM FABIO GRAMAZIO & MATTHIAS KOHLER


INNOVATIVE CONSTRUCTION PROCESSES: Industrial Robot, ETH Zürich 2005

ETH SEC CORE TEAM DIRK HEBEL

INVENTIONEERING PLATFORM

INVENTIONEERING ARCHITECTURE SINGAPORE

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

UNITED_BOTTLE

ETH SEC CORE TEAM Kay Axhausen

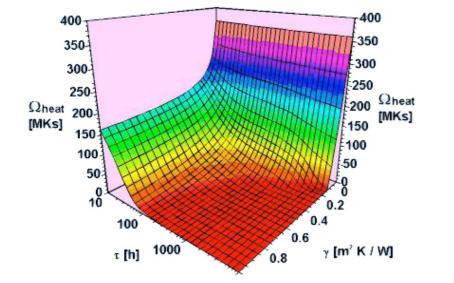
ETH SEC EXPERT TEAM BRUNO KELLER

Baustelle China

Chinas boomende Wirtschaft macht die Volksrepublik zur treibenden Kraft der Weltökonomie nd zum Gesprächsthema Nummer eins der Meinungsführer. Doch der Aufschwung hat auch egative Seiten: Bei weltweit schwindenden Ressourcen nimmt Chinas Energiebedarf rasant zu. Ein Spin-off der ETH Zürich mit Sitz in Peking gibt Gegensteuer.

Wir haben die endlose Weite der Wüste Goli hinter uns gelassen. Tief unter uns nimmt jtztt, der Träume, Volksrepublik der unbegren Strase um Strasse. Dach um Dach (d. Zivill. Miglichketen. Set ist ohl die kommunist sation Gestalt an. Wie ein Bild, das sich lang mor unseren Augen auflautz verden die Dimensionen dessen, was uns unten erwartet, immer klaure erknabz. Wir befinden uns im und ein rieigier neuer Abstatzmarkt lässe

ETH GLOBE magazine, 2006



«Es ist nicht sinnvoll, unser ganzes Engagement in ein paar Nullenergiehäuschen in der Schweiz zu stecken.» Bruno Keller

Auch mit einem kleinen Haken kann magnet führe frägen.
 Brickschäftergen.
 Brickschäfter Britzungen.
 Britzungen.

der «Popmoma-Baustelle gerade Arminungseichn führern, nicht auch Verhand-hungseichn Knevnig. Fürst auch Verhand-naus Jahndein. Die Armat treibt sie aus Erh-naus Jahndein. Die Armat treibt sie aus Erh-haus erhöhen Bauurternehmer keinererscheurug. Und wenn sie Pech-haus erhöhen Bauurternehmer keiner Höhen bezuternehmer beit führen auf sich zwische den Peleern dies neuen Flügbaleri-Express-tion keiner Bagestellt haber - und müssen keiner Bagestellt haber - und müssen keiner Bagestellt haber - und müssen erhöhen Bauerternehmer keiner Babestellt führen zwischen Arbeiternen Statzerstellen sie terbande voller Babestellt auf beziehen Babesten erhöhen Bauerternehmer keiner häusen verstellen sie terbans ein keiner Häusetternehmer beit besicher Prägungen ist von der Kasaustelle besondere Flägkgeten basene Rrätsaustelle besondere Flägkgeten hänget häuset den Babesten der Statzen erhöhen mersätzer verlicht zureiternehmer eins kund Babesten der Babesten hänget sich nicht erhöhen sich kasen einsten Käsaustelle besondere Flägkgeten hänget sich nicht erhöhen sich kasen erhöhen erhöhen erhöhen erhöhen sich kasen erhöhen hänget erhöhen er

Guidelines or low energy residential buildings

Decentralized air supply system

CO2 CONTROLLED LOCAL EXHAUST "Increasing the Effectiveness of Building Ventilation Systems Through Use of Local Waste Air Extraction" by Baldini and Leibundgut, ETHZ GT Young Scientist Award REHVA Clima 2005

TRANSFORMATION OF ETHZ GT OFFICE SPACE: New sustainable office and laboratory test space for new technologies to be expanded again in 2008

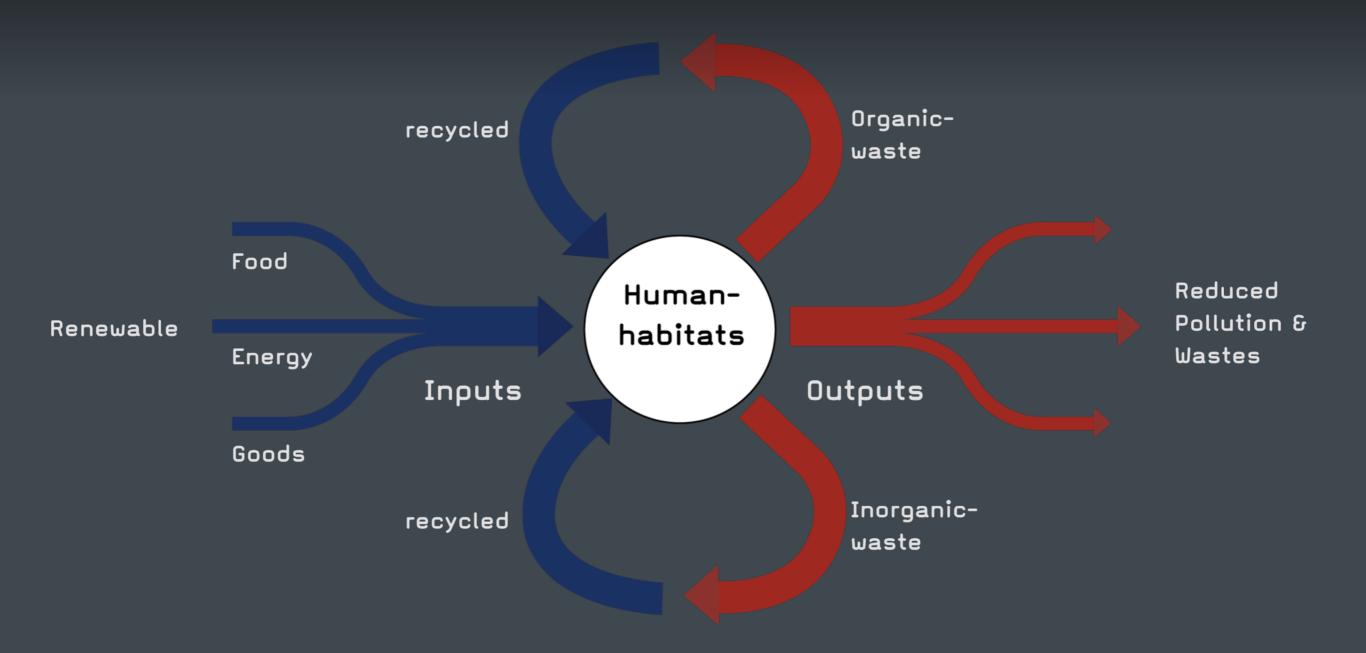
Digital control over power with Implementation of digitalSTROM Eidgenössische Technische Hochschule Zürich

Swiss Federal Institute of Technology Zurich

ETH SEC CORE TEAM

$\begin{aligned} x^{o}(t_{a}) &= x_{a} \\ \dot{x}^{o}(t) &= f(x^{o}(t), u^{o}(t), t) \qquad \forall \ t \in [t_{a}, t_{b}] \\ J(u) &= K(x^{o}(t_{b}), t_{b}) + \int_{t_{a}}^{t_{b}} L(x^{o}(t), u^{o}(t), t) \ dt \\ \dot{x}^{o}(t) &= \nabla_{\lambda} H_{|o} = f(x^{o}(t), u^{o}(t), t) \\ x^{o}(t_{a}) &= x_{a} \\ \dot{\lambda}^{o}(t) &= -\nabla_{x} H_{|o} = -\nabla_{x} L(x^{o}(t), u^{o}(t), t) - \left[\frac{\partial f}{\partial x}(x^{o}(t), u^{o}(t), t)\right]^{T} \lambda^{o}(t) \\ \lambda^{o}(t_{b}) &= \nabla_{x} K(x^{o}(t_{b}), t_{b}) \\ H(x^{o}(t), u^{o}(t), t, \lambda^{o}(t)) \leq H(x^{o}(t), u, t, \lambda^{o}(t)) \end{aligned}$

Optimal Control in Automotive Applications Formulation of an Optimal Control Problem



World Record PAC-Car II during the Shell Eco-marathon in Nogaro on 21 May 2005. Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Brine-Water Heat Pump

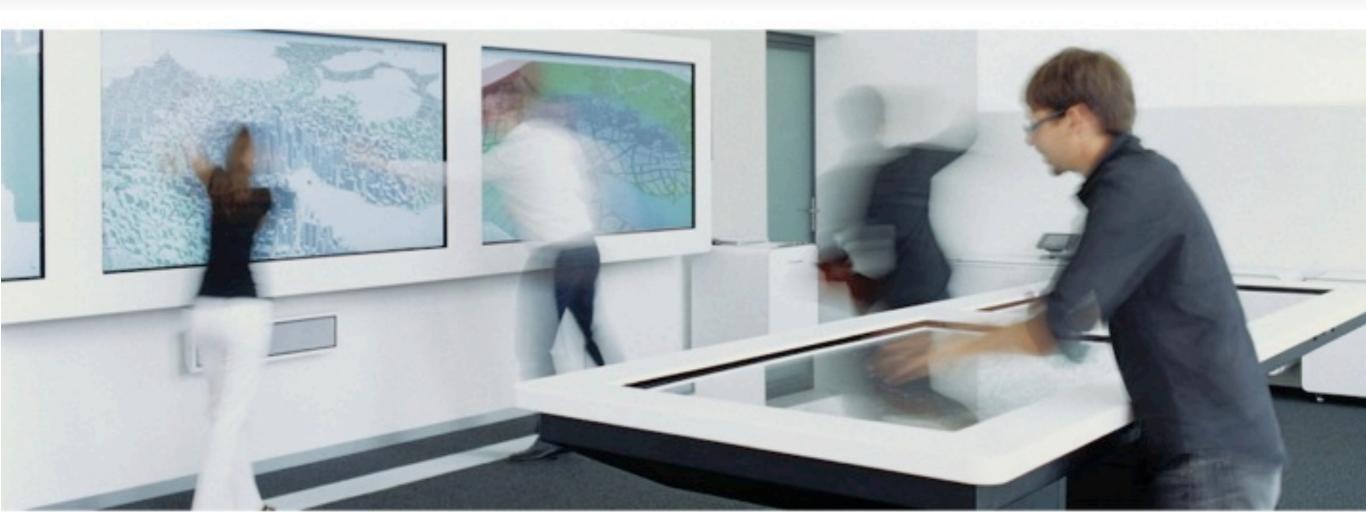
Model: Urban Metabolism

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

source: Richard Rogers, Cities for a Small Planet, 1996

Research Fields

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich


Simulation Platform for the Future Cities Laboratory

POEPLE	ENERGY	WATER	MATERIAL	CAPITAL	SPACE	INFORMATION
	SIM	ULAT	ION P	PLATF	ORM	

Simulation Platform 2010

People • Water • Material • Energy • Capital • Space • Information

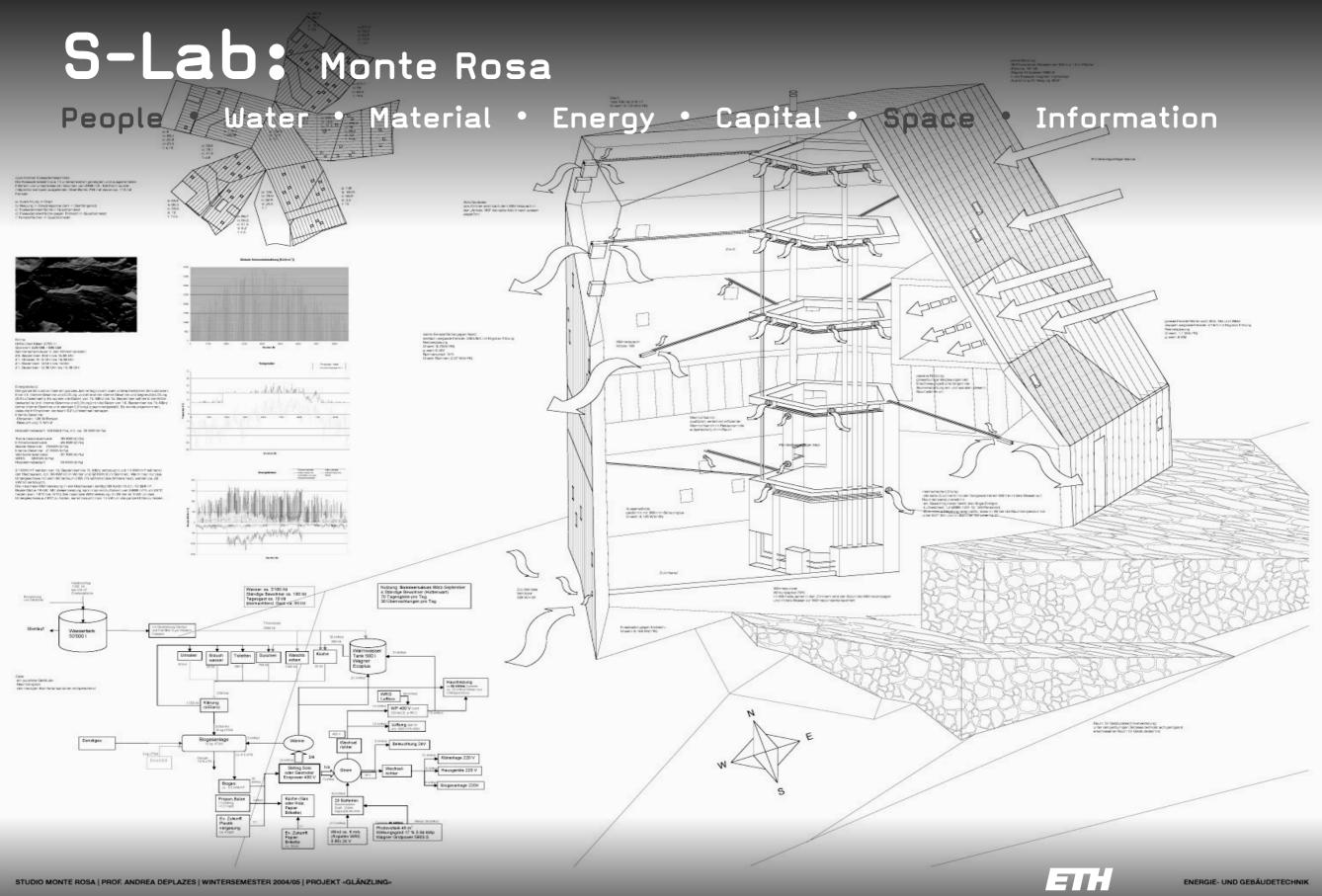
Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Value Lab, Science City ETH Zurich

Future Cities Laboratory

S-Lab: Building Design

New Low-Exergy Buildings: Technology Prototyping Lab: Monte Rosa


M-Lab: Urban Design

Scenarios for Future Neighborhoods and cities: Open City Concept, Masdar, Adis Ababa

L-Lab: Territorial Planning

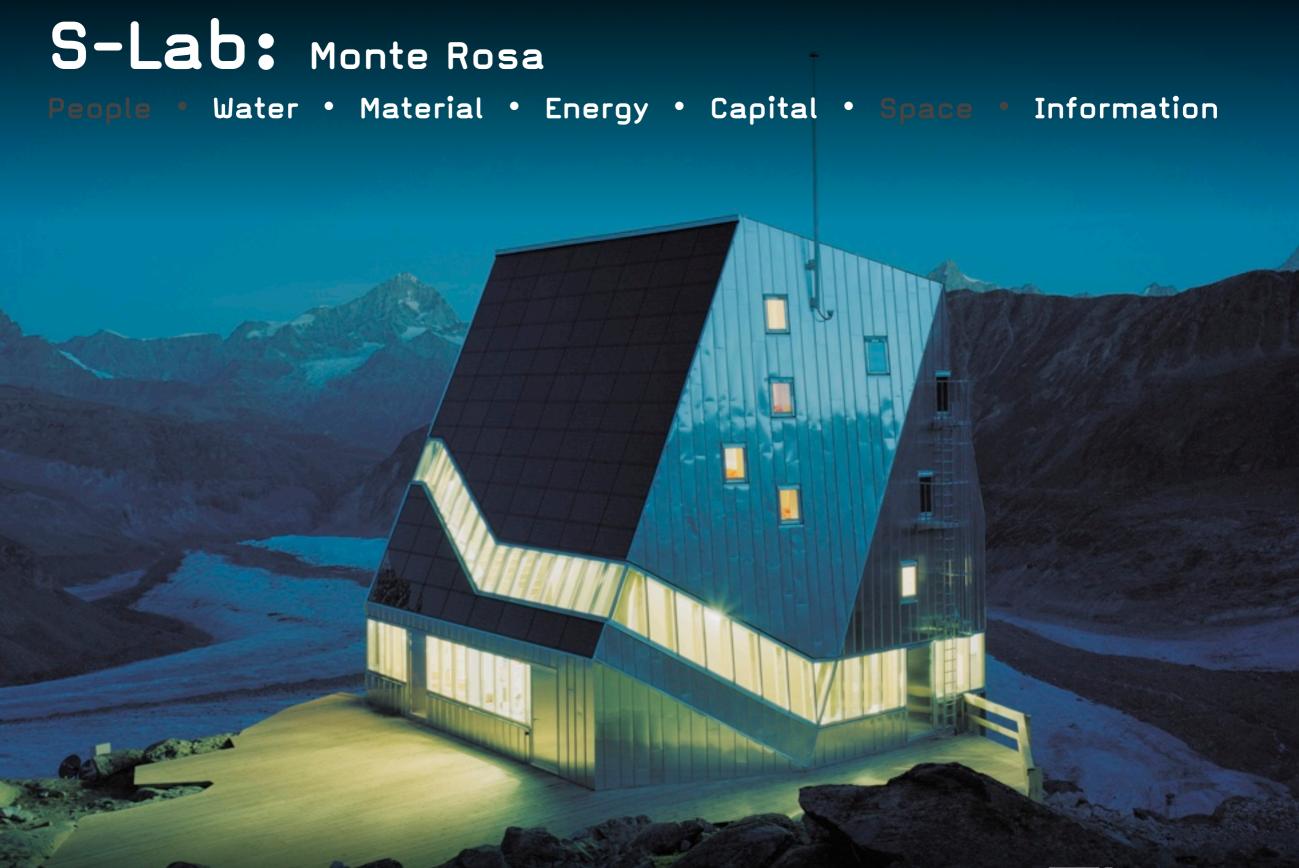
Scenarios for the Organization of Large Territories: Future Cites, Human Environment

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Future Cites Laboratory will enable interdisciplinary teamwork in more integrated Harvesische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

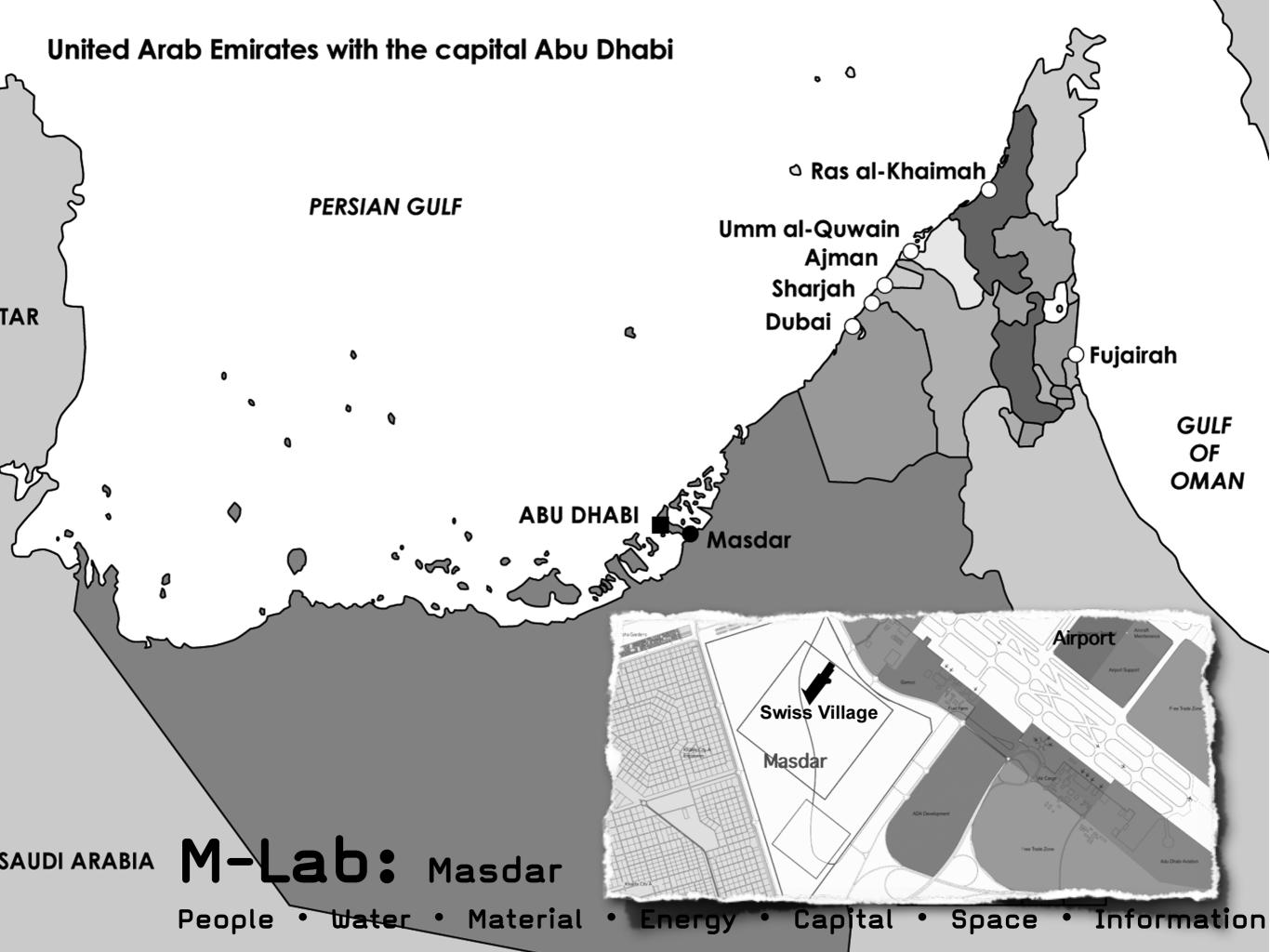
S-Lab: Monte Rosa

People • Water • Material • Energy • Capital •


Information

Climate Change

Monte Rosa Construction Site


New Monte Rosa Hut, Switzerland, Andrea Deplazes In May 2009 construction has started on one of the world's largest and highest atticed entropy entres.

Monte Rosa, Septemper 2009

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Prof. Dr. Gerhard Schmitt

M-Lab: Masdar City, Swiss Village

People • Water • Material • Energy • Capital • Space • Information

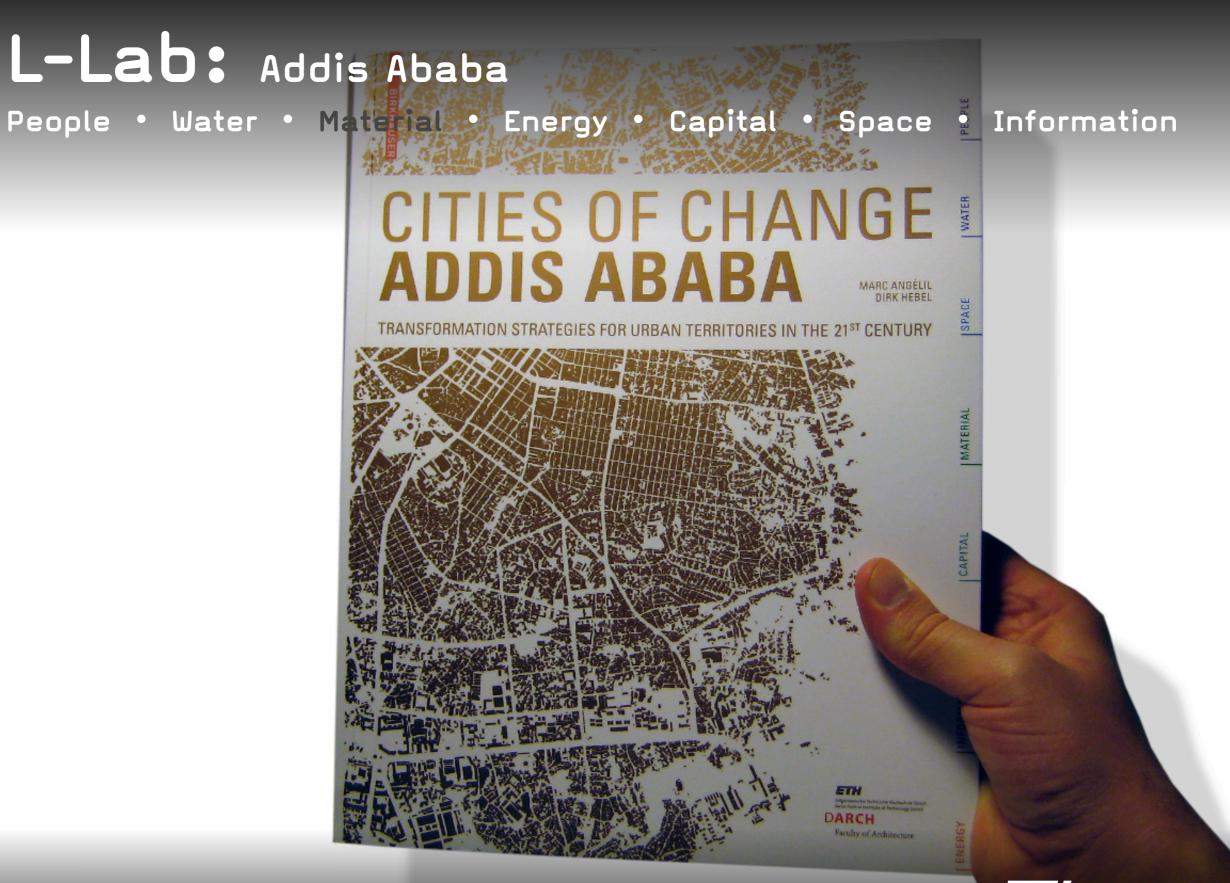
Parametrical Design Studies for Masdar 2010

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Swiss Village

swiss village association

ABU DHABI


0 C 🛛 0 - 9 X 🗑 🛊 🔖 🛊 🖬 🖛 - 🗰 - 👷 - " 🗆 🔄 Inspector 12 Prof. Dr. Gerhard Schmitt SVA plots ILWPOLYLINE 17 M-LaD: Masdar City, Swiss Village 665965 Vertices · Attributes Name Peoples Water • Material • Energy • Capital • Space • Information: ▼ CGA Attribute Mapping LOD4FramesInsideGridX15 --> split(x) {15: LOD4FramesInsideGridZ15 }* LOD4FramesInsideGridZ15 --> split(z) {15: LOD4FramesInsideGridYRand}* Source Attribute Value Rules blindH 0.8 LOD4FramesInsideGridYRand --> split(y) {-1: Wall | insidestoreysubstract: NIL } Rules c_albeto ATTEN #639/86 LOD4FramesInsideGrid5plitX12 --> split(x) {'.6: LOD4FramesInsideGrid5plitX_33(floor(rand(30,30))))'.4: LOD4FramesIns LOD4FramesInsideGrid5plitX21 --> split(x) {'.4: LOD4FramesInsideGrid5plitX_23(floor(rand(30,30))))'.6: LOD4FramesIns LOD4FramesInsideGrid5plitZ11 --> split(x) {'.5: LOD4FramesInsideGrid5plitX_22(floor(rand(30,30))))'.5: LOD4FramesInsideGrid5plitX_22(floor(rand(30,30))))'.5: LOD4FramesInsideGrid5plitX_22(floor(rand(30,30))))'.5: LOD4FramesInsideGrid5plitX_22(floor(rand(30,30))))'.5: LOD4FramesInsideGrid5plitX_22(floor(rand(30,30)))'.5: LOD4FramesInsideGrid5plitX_22(fl Rules c_plot Rules c_pvblue #2543.8c Rules c wall #b19f86 Rules f height 3.8 Rules LOD4FramesInsideGridSplitX_22(e) --> f true Rules frameW 0.07 split(z) {-e: Grid22X}* Rules framewidt 10 Rules of height 4.5 Grid22X --> Rules of true split(z) {-15:Grid222 |-15: Grid222 }* Value Grid222 ---> split(x) {-15:Grid22Y 1-15: Grid22Y }* lod Rules milkClassR 1.25 Rules n5ymmetries Grid22Y ---> split(y) {insideheight: Floors I -1 : NIL} overhang Rules 1.9 Rules nodectheigh 7.5 LOD4FramesInsideGridSplitX_23(e) --> Rules pv_height 1.5 Rules split(z) {-o: Grid23X}* storeys Rules windowW 3.75 LOD4FramesInsideGridSplitX_33(a) --> A Reports split(z) {-e: Grid33X}* 🖬 Shape Tree 🔝 🗽 CGA Problems 🛄 Console Grid23X --> cose scope.sz > 29 : split(x) {-15: Grid2321 -15: Grid232}* else: Grid222 Grid23Z ---> Ten 100108-1-masdar.of.massing.rule.jh.cga:SVA 10%: split(z) {-15: Grid23Y1 ~15: NIL | ~15: NIL}* V Lot 10X: split(z) {-15: NIL| -15: NIL | -15: Grid23Y}* 50X: split(z) {-15: Grid23Y} ~15: NIL | -15: Grid23Y}* 🛙 😭 LOOSelect r 💼 LOD2 10%: split(z) {~15: NILI ~15: Grid23Y | ~15: NIL}* 1%: split(z) {-15: Grid23Y1 -15: Grid23Y 1 -15: NIL}* 1%: split(z) {-15: NIL1 -15: Grid23Y | -15: Grid23Y}* PodiumLevel else: split(z) {-15: Grid23Y1 -15: Grid23Y | -15:Grid23Y}* V 💼 AbovePodiumLevel Grid23Y --> split(y) {insideheight23: Floors | -1 : NIL} 🗑 Overhang SplitExFrames F CODSPV T LOOSPY_Z Grid33X --> case scope.sz > 30 :split(x) {-15: Grid3321 -15: Grid332 1 -15: Grid332}* IN NILORNOT else: Grid23X Gridlig --> IN NILORNOT 10%: split(z) {~15: Grid33Y1 ~15: NIL | ~15: NIL}* T R NILORNOT 10%: split(z) {-15: NIL| -15: NIL | -15: Grid33Y}* R.A. 58%: split(z) {-15: Grid33Y1 -15: NIL | -15: Grid33Y}* ► C NILORNOT 10%: split(z) {-15: NTL| -15: Gridl3Y | -15: NTL}* ► INLORNOT 1%: split(z) {~15: Grid33Y1 ~15: Grid33Y | ~15: NIL}* ► INTROUMENT 1%: split(z) {-15: NILI -15: Grid33Y | -15: Grid33Y}* ICODSPV_Z else: split(z) {-15: Grid33Y1 -15: Grid33Y | -15:Grid33Y]* E LOOSPV Z Grid33Y --> split(y) {insideheight33: Floors | -1 : NIL} ► 1005PV_Z ► 1005PV_Z FrameRoof --> case lod --5 : L005Roof Image: Control of the second secon case lod >5: LODSRoof ► CODSPV_Z else: Woll ECOSPY_Z E LODSPV_Z ► 1005PV 2 Floors --> case lod ==5 : L005SplitFloors ► ICLODSPV Z case lod >5: LODSSplitFloors ► 1005PV 2 else: Woll ICOUNT COUNT OF CO ICOSPV_Z L005SplitFloors --> split(y){{f_height: L005FloorLevels}*1 pv_height: L005Roof} E005PV_2 ► 1005PV 2 // case scope.sy < 3*f_height : split(y){{f_height: LOD5FloorLevels}*| pv_height: LOD5Roof} E LOOSPV 2 else : split(y){{f_height: L005FloorLevels}*1 pv_height: L005RoofPV} LOOSPV_Z LODSPV. LODSFloorLevels --> Wall LODSRoofPV --> split(y) (.3: comp(f) (bottom: Wall | side: Wall | top: color(c.albeto) RoofSurface. } | -1: NIL LODSPV_2 LODSRoof --> split(y) {.3: comp(f) {bottom: Woll | side: Woll | top: color(c_eldete) RoofSurface. } | -1: NIL } E LOOSPY 2 LOOSPV 2 Perspective 71 ► CLOOSEV 2 LOOSPV.) Parametrical Design Studies 2010 Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

L-Lab: nes Town,

People • Water • Material • Energy • Capital • Space • Information

New Energy Self-Sufficient Town Franz Oswald, Office of Architecture and Urban Studies, Bern, Switzerland

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

M-Lab research

Living Lab Addis Ababa

ST.

E.

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

The

Living Lab Singapore

Introduction Information Architecture

- Intelligent urban-rural partnerships are crucial with regard to all stocks and flows
- 2. Trans-disciplinary simulation is the instrument that we expect to deliver design scenarios for sustainable future cities
- 3. We aim at dynamic urban-rural systems simulations on different scales in space and time --> S,M,L, young to ageing societies
- 4. Design must be in the centre of the Future Cities Laboratory, as it focuses on and delivers sustainable environments

Thank you!

SEC FCL Monte Rosa

