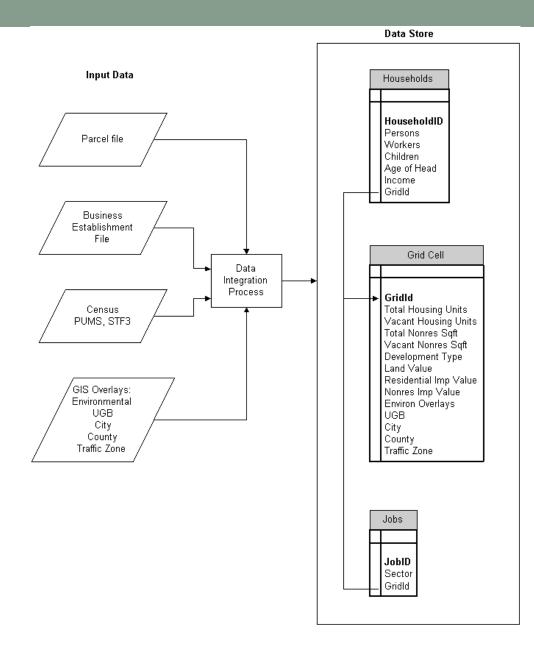
Status Report on UrbanSim and the Open Platform for Urban Simulation

Paul Waddell

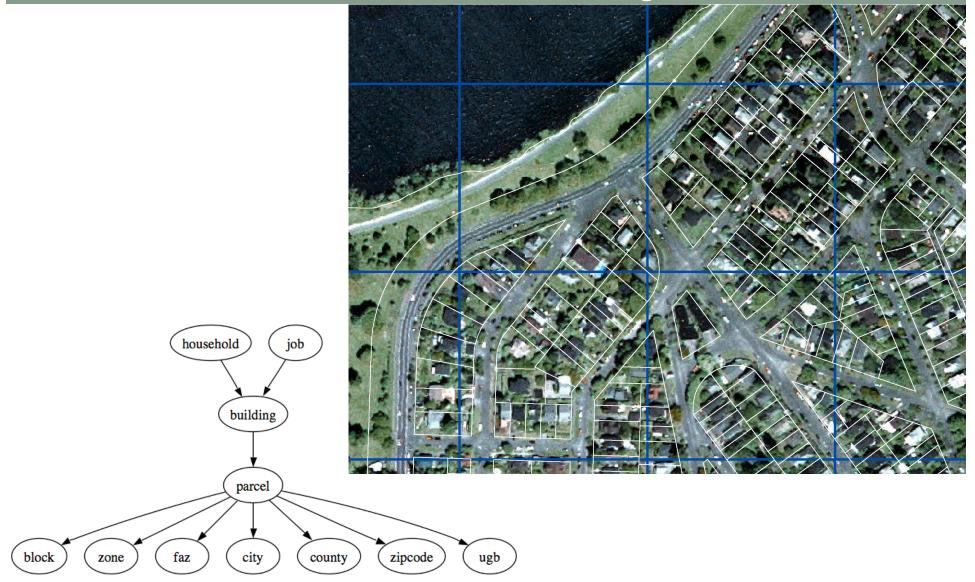
Department of City and Regional Planning

UC Berkeley

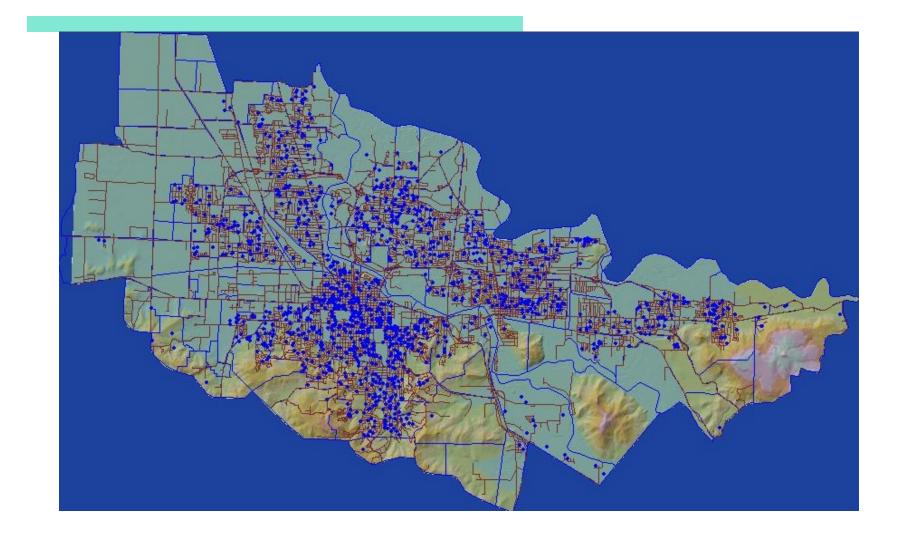
www.urbansim.org

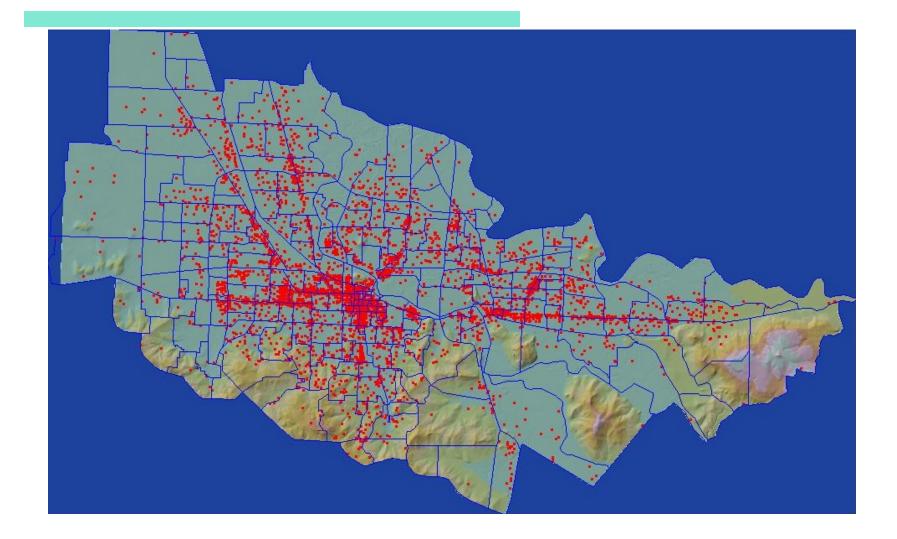

May 17, 2010

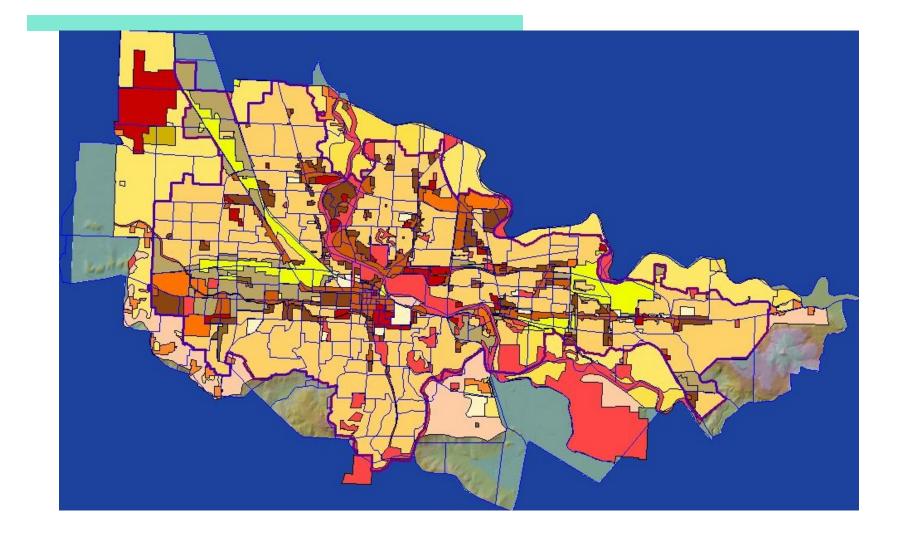
Agenda

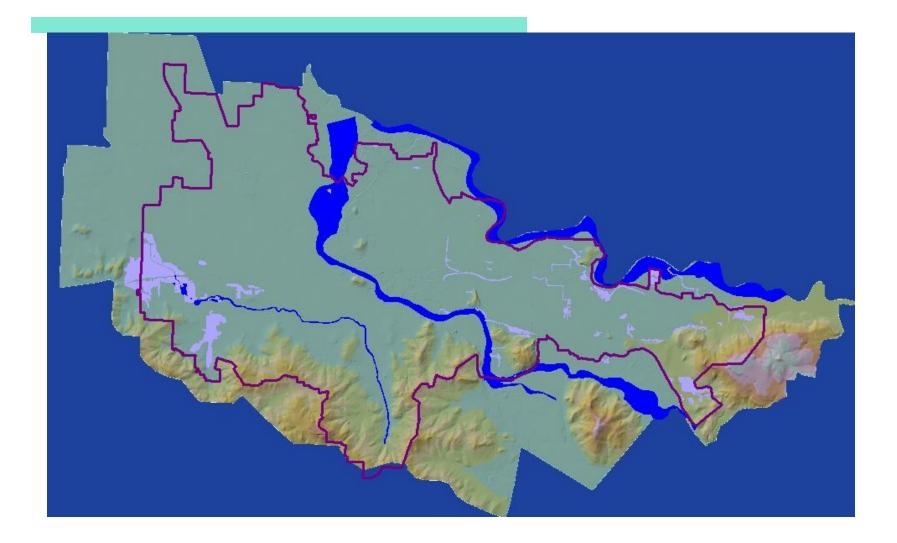

- Brief Updates on UrbanSim Development
 - Data Integration
 - Model Uncertainty
 - Zone version of UrbanSim
 - Interactive Database and Scenario Creation
- Integrated Model Application Case Study: Puget Sound

Data Integration in UrbanSim


UrbanSim Data Integration Process


New Model System Based on Parcels and Buildings


Input Data: Household Survey


Input Data: Employment

Input Data: Land Use Plan

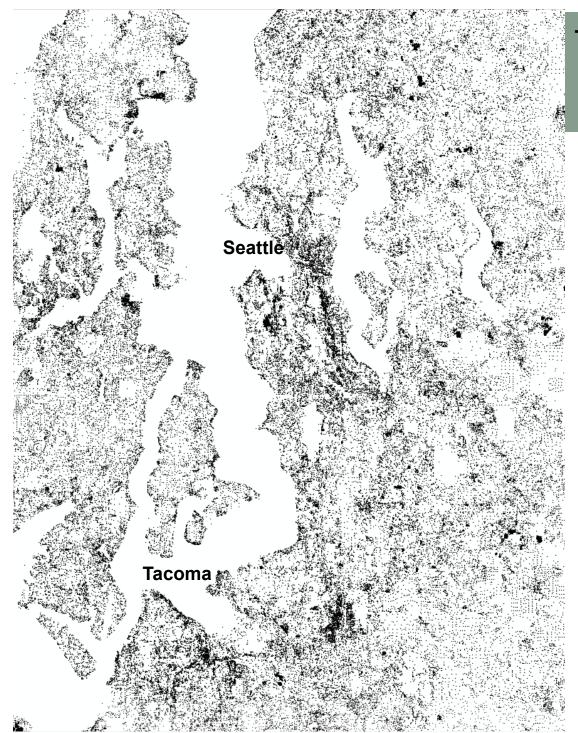
Input Data: UGB and Environmental

Data Integration Challenges

Messy Data

- Many outliers, errors, and missing data
- Inconsistent coding schemes among data sources

• Difficult to integrate with other data sources


- Building-level data
- Business establishment data
- Market information (vacancies, prices, rents)

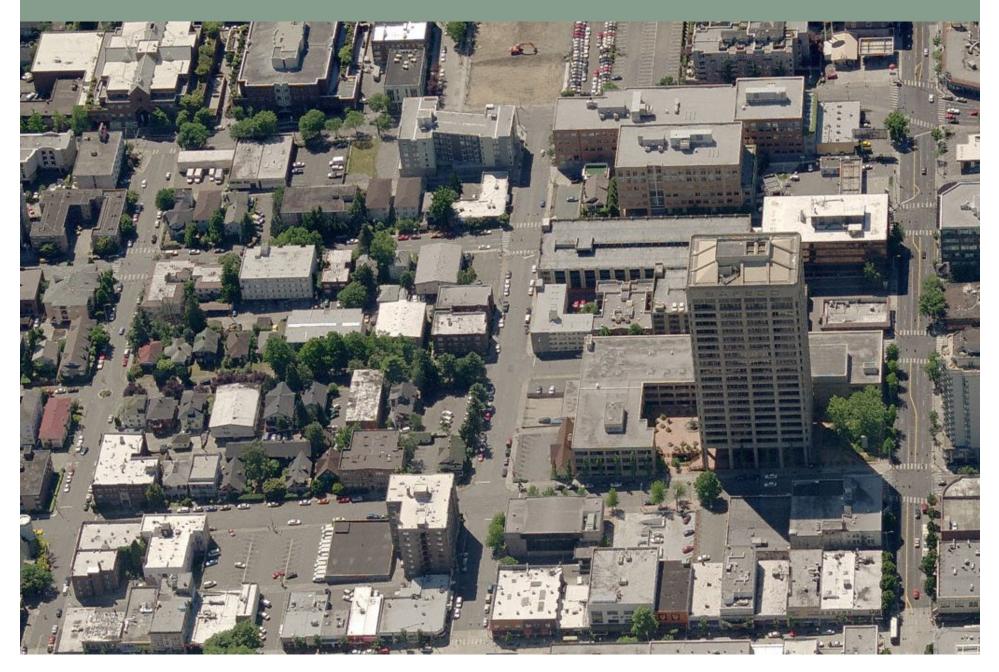
Volume of data too massive to manually correct

• 2+ milliion parcels in Bay Area

Problems hard to diagnose

- Which data is wrong? (which attributes/sources are incorrect? May have systematic patterns of omissions – e.g. tax-exempt properties)
- Misgeocoding: some businesses are geocoded to the wrong place. Complicates the diagnosis.

The Magnitude of the Problem


This map shows only buildings with missing values for "Building Type ID", a description variable.

195,501 out of ~1,200,000 Building Type ID = Null King, Kitsap, Pierce & Snohomish Co.

Data Imputation Tool

Data Imputation Tool

Ways Forward on Data Integration

Option 1:

- Machine Learning/Data Mining
- Model patterns in the observed data
- Use the models to detect outliers, impute data
- Preliminary work on this now implemented using WEKA library

Option 2:

- In some cases, the missingness level is very high
- Developing countries (e.g. Ghana and South Africa)
- Potential to Synthesize much of the data, subject to constraints, using procedural modeling

Option 3:

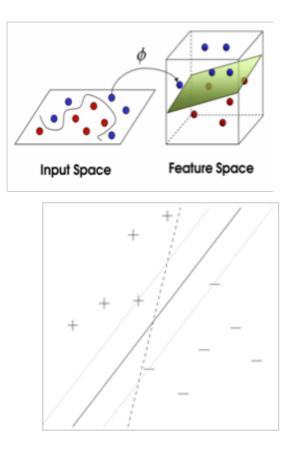
 Potential to hybridize statistical/machine learning and procedural modeling, to synthesize from disparate sources?

Data Imputation K-Nearest Neighbors for Continuous Attributes

Attributes: Stories, Bldg SF, Improvement Value, etc.

KNN Basics:

Finds k closest neighbors in n dimensional space.

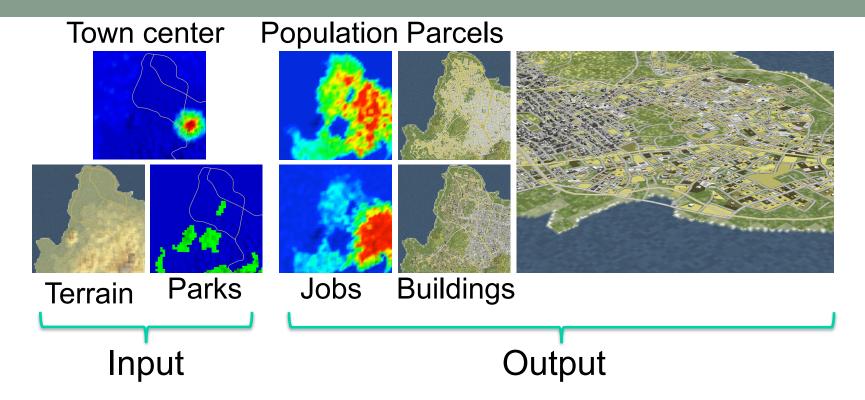

Uses k neighbors target values to make prediction.

$$L^n(\mathbf{x}_1,\mathbf{x}_2) = igg| \sqrt[n]{\sum_{i=1}^{\# ext{dim}} |\mathbf{x}_{1,i} - \mathbf{x}_{2,i}|^n}}$$

$$\hat{f}(x_q) \leftarrow \frac{1}{k} \sum_{i=1}^k f(x_i)$$

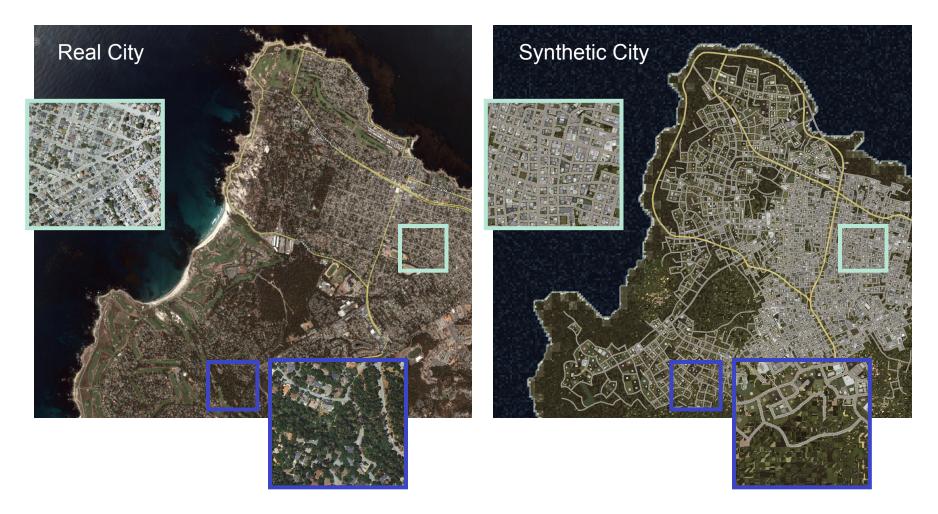
Data Imputation Support Vector Machines for Categorical Atributes

- Attributes: Building Use Code, Land Use Code, etc.
- SVM maps training instances into higher dimensional space.
- Creates hyper planes that have maximum distances from instances as category boundaries.


Machine Learning/Data Mining

So far, only applied to single tables, single output

Need to develop analysis for:

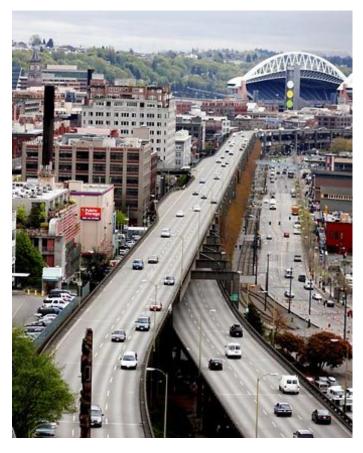

- multivariate outcomes,
- across tables,
- some of which have poorly-defined (spatial) crossreferences
- and mixtures of continuous, categorical and ordered outcomes

Option 2: Procedural Modeling

Vanegas, et al, 2009

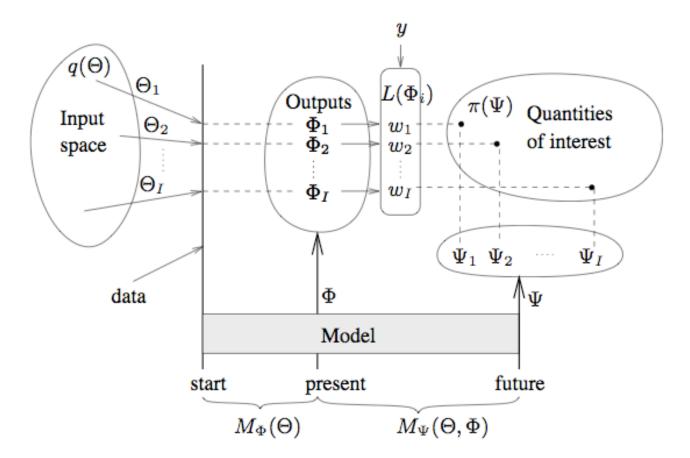
Results: Completion and Validation

Vanegas, et al, 2009


Model Uncertainty

- Developed rigorous methodology for assessment of uncertainty in integrated land use and transport models based on Bayesian Melding (published in Transportation Research A, 2007)
- Currently testing an application to the question: what would happen if the Alaskan Way Viaduct adjacent to the waterfront in the Seattle CBD were demolished? It is at risk of collapse in the next earthquake.

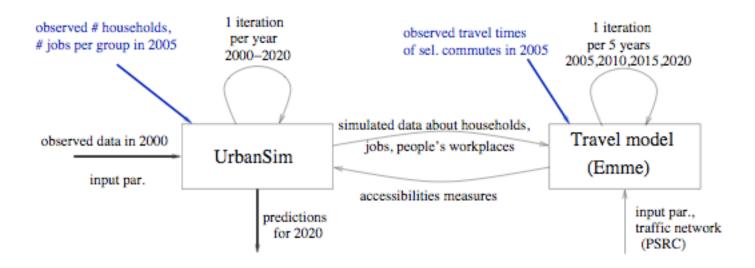
Alaskan Way Viaduct Scheduled for Demolition in...

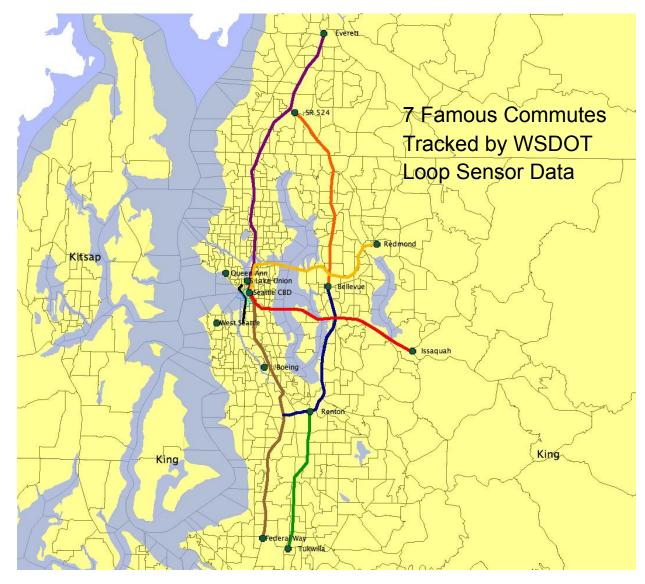

The next earthquake?

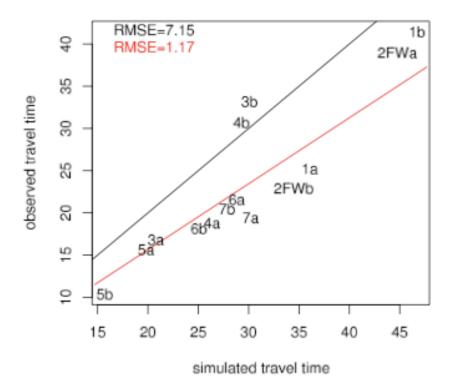
Some claim that alternatives which do not have comparable Traffic capacity will Cause massive failure of traffic in CBD and on I5.

Others claim that we should replace it with surface street and transit, and reclaim the waterfront. It won't cause much traffic impact because people adapt.

How much would a low-capacity alternative affect travel times over 10 years?

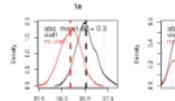



Likelihood and posterior distribution


 y_k is sqrt of observed quantity in zone k

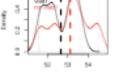
$$egin{split} y_k | \Theta_i &\sim N(\hat{a} + \hat{\mu}_{ik}, \hat{\sigma_i}^2) \ w_i &\propto p(y|\Theta_i) = \prod_{k=1}^K rac{1}{\sqrt{2\pi \hat{\sigma_i}^2}} \exp\left[-rac{1/2(y_k - \hat{a} - \hat{\mu}_{ik})^2}{\hat{\sigma_i}^2}
ight] \ p(\Psi_k) &= \sum_{i=1}^I w_i N(\hat{a} b_a + \Psi_{ik}, \hat{\sigma_i}^2) \,, \quad k = 1, \dots, K \end{split}$$

Quantity of interest: Travel times on selected routes



Systematic bias in travel times predicted by travel model was corrected

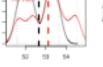
 $\log(T) \sim N(\log(T_{sim}) - 0.25, 0.16^2)$


2FWb

ř. ÷

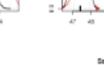
Panel P

3



2

3

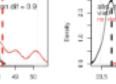

2

2.

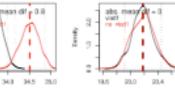
30.0 30.5 31.0 31.5

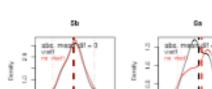
WSYSLU

Ξ

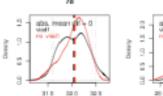

3

28.0 25.0 25.0 22.0


21.0

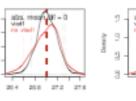

ā ×.

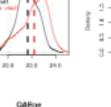
3


2FWa

15.4

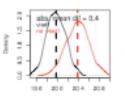
How much difference in travel time on those famous commutes if we remove the Viaduct in 2010 and simulate land use and transport to 2020?


GAWSh


21.5 22.5

20.15

28.8

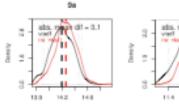

27.6 28.6 28.4

23.0

22.0

ViaN2S

17.5 18.5


ч.

15.5 15.5

15.0

586

14.6

30.6 31.8 31.4 31.8

ViaS2N

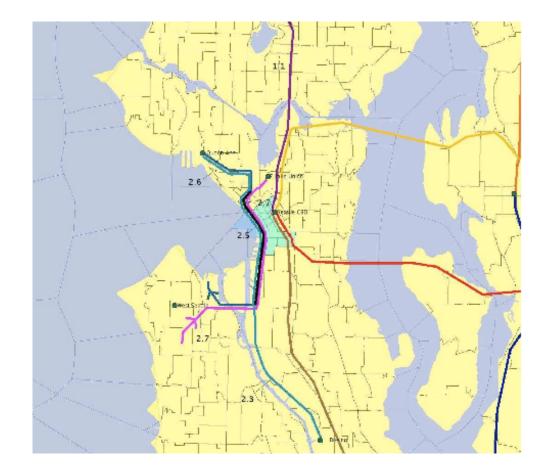
3

2

15

10.1 21 22 On distant routes < 1 minute,

11.8


12.2

On others closer to 2-3 minutes

route	scen.	2000	2010	inc.	2020	inc.
QAWSh	viad	21.1	21.3		21.1	
(7.4mi)	no v.		23.4	10%	23.7	12%
WSrSLU	viad	20.9	22.1		22.8	
(7.4mi)	no v.		24.7	12%	25.5	12%
QABoe	viad	24.5	24.6		24.5	
(9.9mi)	no v.		26.7	9%	26.8	9%
ViaN2S	viad	16.0	16.1		16.0	
(5.2mi)	no v.		18.4	14%	18.5	16%
ViaS2N	viad	18.1	19.1		19.8	
(5.2mi)	no v.		21.5	13%	22.4	13%

On shorter routes close to Viaduct, these translate to 9 – 16% increases in travel time

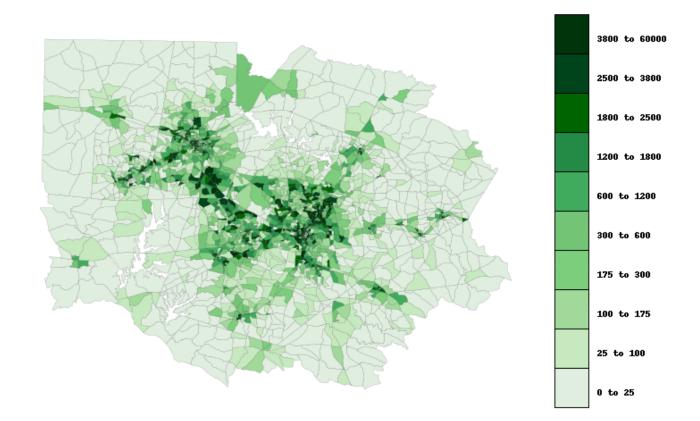
Zone Version of UrbanSim

Zone Model System Documentation On-line

A Zone-Based Version of UrbanSim

UrbanSim can be configured to run at a Zone Level, Parcel Level or Gridcell Level. This section of the documentation describes the zone level model configuration. By zone, we mean any irregular polygons, from Traffic Analysis Zones used in travel models, to large administrative units such as cities, or small Census Blocks or Neighborhoods. It is up to the user to determine what level of geography fits their needs and data constraints best. The description below is based on the development and initial testing of a zone-level UrbanSim configuration that is being tested, with some variations, in San Antonio, Texas, Durham, North Carolina, and the Puget Sound, Washington.

Given the flexibility of the OPUS platform, it has been relatively easy to adapt the UrbanSim model configurations from the parcel version to work at a zone level. The location_set for the household location choice and employment location choice models are set to building, in both models. But in the zone version of the model, buildings are actually aggregated data, representing the composite of individual buildings that are of the same building_type and in the same zone. So if one defines two housing types, single_family and multi_family, then there will be two residential buildings per zone.


Models in the Zone Version of UrbanSim

Below are the models used in the zone version of UrbanSim. Each model name links to a more detailed description of its objective, algorithm, configuration and data.

Model Name	Abbreviation	Description
Scheduled Development Events Model	SDEM	Handles Scheduled Development Events
Scheduled Employment Events Model	SEEM	Handles Scheduled Employment Events

Animated Map Indicators

2000

Automated Animated GIF images produced from Mapnik maps, using ImageMagick

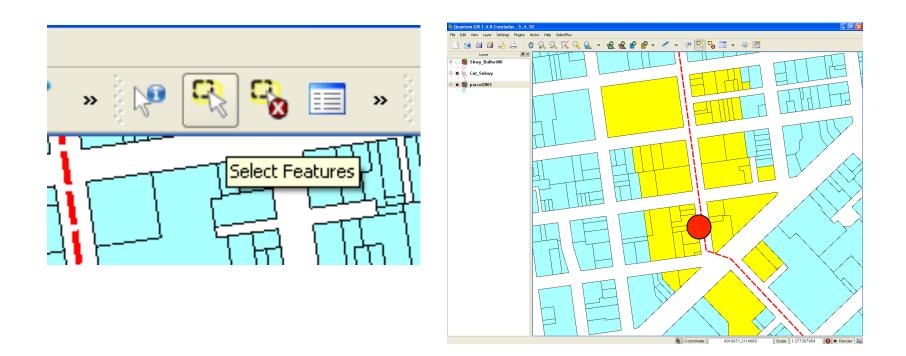
Database and Scenario Creation Tools and Graphical Interface – A Work in Progress

Database Schema Management

- SQLAIchemy is an Object-Relational Mapper and database abstraction library, allowing use of standard Python syntax to create and query databases in multiple back-end database servers:
 - Postres, MySQL, SQLite, MS SQL Server, Access
- Elixir is a Declarative Layer on SQLAlchemy
 - Makes it easy to define database schema
 - Has a GUI builder, called Camelot, for browsing/editing tables

Database Schema Definition using Elixir

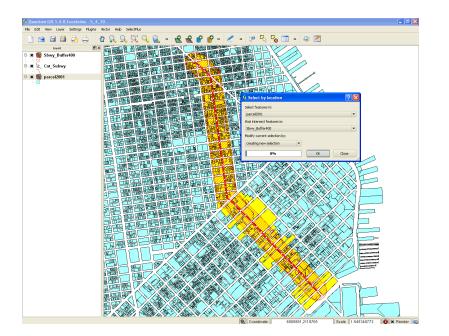
```
class Building(Entity):
  using options(tablename='buildings')
  building id = Field(Integer, primary key=True)
  building quality id = Field(Integer)
  building type = ManyToOne('BuildingType', colname='building type id')
  improvement value = Field(Integer)
  land area = Field(Integer)
  non residential sqft = Field(Integer)
  residential units = Field(Integer)
  sqft per unit = Field(Integer)
  year built = Field(Integer)
  stories = Field(Integer)
  tax exempt = Field(Integer)
  parcel = ManyToOne('Parcel', colname='parcel id')
```


Scenario Creation Graphical Interface

• Requirements

- Easy means to select parcels or other geographies
- Ability to edit attributes
- Ability to edit geometry (where appropriate)
- Open source, multi-platform, easy to integrate with OPUS
- Strategy:
 - Quantum GIS for spatial data interaction, with customization
 - SQLALchemy/Elixir/Camelot for tabular data management

Geographic Selection

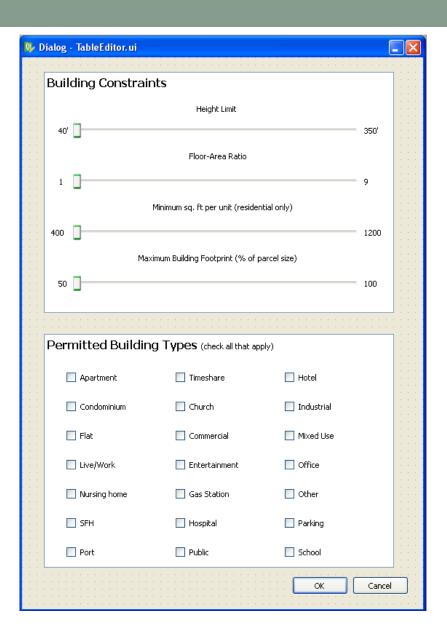

- Basic spatial selection \rightarrow Point and Click
- e.g. parcels near a planned subway stop

Geographic Selection

- Location or proximity selection
- e.g. parcels within buffer distance of subway alignment

	TA HE WITH THE TOTAL HAR DO N DATE - WAS L					
🤨 Buffer(s)	? 🔀					
Input vector layer						
Cnt_Subwy	 ▼ 					
Use only selected features						
Buffer distance	400					
 Buffer distance field 						
Length	v					
Dissolve buffer results						
Output shapefile						
tings/chenley/Desktop/CP255Test/Sb	wy_Buffer400.shp Browse					
0%	OK Close					

Geographic Selection


- Selection by attributes
- e.g. parcels within buffer with FAR =< 2

parcel2001 Fields Incomplete land_val struc_val dbiusetype stories bldgsoft lidarsoft high_soft yrbuilt far totaluses tractid taz_1 shape_area planning_2 Operators = < <= >=	Values 0 1 1 2.5 2.8 3 3.6 4 4 4.8 5 6 9 	Sample	All NOT IN
SQL where clause			

» 投 投 😰 😰 » 🥒 »		🔲 » 🤐	2			
(· · · · · · · · · · · · · · · · · · ·				
	tribute table - parce	12004				
	tribute table - parce	12001				
	far	totaluses	tractid	taz_1	shape_leng	
590	6 1.8	1000	010400	381	190.000063055	
	g 1.8		010700	376	371.816630605	
622	0 1.8		010700	376	165.00213608	
622			010400	382	236.003135073	
			010400	381	269.999312451	F
			010400	382	225.007346589	
658			010400	381	382.888683508	
			010400	382	120.003856662	8
	-		010400	381	235.000294048	
			010700	376	165.001234232	
669			010700	376	215.002323677	-
	5 1.8		010700	376	168.097727627	
	- 1.0	2200	010400	281	100.000761665	▶
			a a c			
	🛄 🔛 🕒 🛯	<u>«</u> () () () () () () () () () (ook for in gid	▼ Sear	cn
	now selected records only	× Search select	ed records only	Advanc	ed search Hel	p
		_				
				<u> </u>		
				X 1 🗁		
			$\mathbb{P}^{\mathbb{N}}$			
					1	
		\wedge \wedge \vee \times \vee				

Simple Table Editing

- Edit Development Constraints for Selected Parcels
- Constraint changes are made to a copy of the parcel table
- •Changed values override original values in model runs

Simple Interactive Table Filtering/Editing

For example, to edit control totals tables

🗞 Camelot - [Households Control Totals]]			- 7 - 7		
🕹 File Edit View Window Help 🔤 🗗 🗙						
		3 📇 🚳 🕐				
Control_totals	Households contr	ol totals 🔍		🏷 (180 rows)		
Households control totals	Year	Persons	Total number of households	Persons		
Household relocation rates	D 200	0 0	133204	E 💿 all		
Job relocation rates	b ; 200	00 1	100433			
Development event historys	b : 20	0 2	67934			
	D . 200	30	20654	02		
	D ! 20	0 4	7475	03		
	D I 200	01 0	133941	04		
	D 20)1 1	100989			
	D ; 20	01 2	68310	-Year		
	20)1 3	20768	⊙ all		
	a 20)1 4	7516	○ 2000		
	a 20	02 0	134682	0 2001		
	a 20	12	101547	0 2002		
	a 20	12 2	68688	0 2003		
	20	3	20883	0 2004		
	20)2 4	7558	○ 2005		
Control_totals	20	03 0	135427	○ 2006		
X Configuration	20	03 1	102109	○ 2007 🔽		
	-					