







# SustainCity Brussels case study

Zurich, 17-19 April 2013

Sylvie Gayda, Inês Cabrita







#### Outline

- The study area
- Model development
- Scenario simulations (in progress)



### The study area



#### The study area

- ~ Brussels Metropolitan area
- 151 communes
- ~ 4 300 km²
- ~ 3.3 millions inhab. (2010)
- ~ 1.5 million jobs (2010)

#### The Brussels-Capital Region

- ~ 1 million inhabitants
- ~ 650 000 jobs

#### **Topical issues**

Congestion, environmental damages, tendency to sprawl, demographic growth, PT lack of capacity and funding, ...

strate

3 Note : 16 of the 151 communes making up the final study area are missing on this map.

### The study area (cont.)





## **MODEL DEVELOPMENT**



#### Summary of what was done for the model development

#### Development of an Urbansim model for Brussels

- Collection of data (population, employment, buildings 2001, 2007, and projections) (Stratec and UCL)
- Development of a synthetic population
  - (because no access to an extract of the census, to constitute the "agents")
- Estimation of sub-models (EPFL):
  - residential real-estate price model (hedonic price model)
  - activity location choice models: household / employment (logit)
  - development project location choice models: residential/non residential (logit)
- + Development of Matsim for Brussels by TUB -> coupling UrbanSim/Matsim
- Checks on 2001 results (EPFL, Stratec)
- Test of the model on the period 2001-2007 (EPFL, Stratec)
- Implementing mode choice (TUB + parameters by Stratec) (in progress)



#### Tasks achieved in parallel on the Brussels case study

#### Spatial issues – analyses on Brussels (UCL), notably:

- effect of the size of the study area on the results
- effects of the size of the basic units (zoning) on the results

 Tests on UrbanSim with a synthetic (simplified) city (UCL)



### Main submodels in UrbanSim



UrbanSim main model after Waddell (2002) (Source : TUB, Chapter for Delivrable D7.2. : Using MATSim as a travel model plug-in to UrbanSim)

#### Introduction of mode choice in MatSim/UrbanSim



Remarks: PT times and costs do not change endogeneously (no PT model); another road traffic model than Matsim could have been used (with Matsim: harmonised modelling framework: microsimulation)

framework: microsimulation) 9

## Mode choice in Matsim

#### Features:

- Logit model combined with a learning process model
- Parameters (time and cost coefficients) taken from other studies by Stratec on Brussels
- Limit of Matsim mode choice: one single set of modal constants (car/public transport) for the whole study area
- May be difficult to calibrate

#### Difficulty encountered with Matsim:

- Large computer memory (RAM) needed
- Yet larger memory needed with the mode choice module



## **SCENARIO SIMULATIONS**



#### Simulation programme

Simulation of a test scenario (Stratec) (in progress) :

- cordon pricing common to all 3 cities
- Definition of 3 policy scenarios (Stratec, UCL)

#### Simulation of policies (Stratec) (in progress) :

- Urban road pricing (in progress)
- Increase of the capacity of the orbital motorway (in progress)
- Densification (in progress)

#### $\rightarrow$ Simulation work still in progress !

Comparison of the road pricing results with other studies made by Stratec (short term effects in Brussels road pricing study, long term effects in PROPOLIS and SCATTER)

### Indicators and inputs for the social welfare function decomposition

### Test scenario : cordon pricing



 Cordon pricing implemented in the city centre in 2015

City centre defined as Brussels Capital Region ("19 communes") and the orbital motorway (Ring)

 Additional cost of 5 euros during the morning peak (between 6 am and 10 am)



#### Transport policies

- 1 Urban road pricing
- 2 Increase of capacity of the orbital motorway (Ring): + 2 lanes in each direction

#### Land use policy

• 3 Densification policy



### Urban road pricing

- Distance toll applied on Brussels Capital Region and on the Ring with a flat fare = 0,43€/pcu-km
- 0,43€/pcu-km

   mean optimal pricing that internalises the marginal external costs during morning peaks (6h-10h)
   (estimation by Stratec, according to IMPACT unit values)

Coûts externes marginaux par EVP en RBC en heure de pointe du matin (8-9h)



#### Densification scenario

- Policy goals :
  - Population 2001-2020 increase concentrated in the "communes" classified as being part of the "agglomeration" (according to the classification by Van Heck et al., 2007)
     ✓ (19 + 22 = 41 communes on 151)
  - Tertiary employment 2001-2020 increase concentrated in the zones with high accessibility, i.e. located at less than 1200 m from an IC/IR rail station ("ABC theory" from The Netherlands)

#### • Measure :

- increase the residential units and the non-residential floor space in the target zones (by means of the "Scheduled development events" table)
- measure implemented in 2015



Densification scenario - Population



"Communes" defined as centre and agglomeration according to Van Heck et al. (2007) are in purple. stratec

#### Densification scenario - Jobs



Statistical sectors classified as : A : < 1200 m IC/IR station B : > 1200 m IC/IR station, < 800 m RER station or < 2000 m highway C : > 1200 m IC/IR station, > 800 m RER station, < 200 m highway R : others

Typology "ABC" of the statistical sectors of the study area (Source : UCL)



- Densification scenario 20 % increase in capacity in the "agglomeration" – Population preliminary results
  - Agglomeration":
    - 2001: 1.40 Mhab
    - 2020: 1.69 Mhab (+21 %)
    - 2020 densification: 1.90 Mhab (+36%)
  - Rest of the study area:
    - 2001: 1.45 Mhab
    - ✤ 2020 BAU: 1.90 Mhab (+31%)
    - 2020 densification: +1.68 Mhab (+17%)



#### Densification scenario - Population

Evolution 2001 -2020BAU - target area20.5%Scenario - target area35.9%BAU - non target area30.8%Scenario - non target area15.9%

strate



#### Densification scenario - Households

Evolution 2001 -2020BAU - target area16.6%Scenario - target area34.7%BAU - non target area30.9%Scenario - non target area20.0%



21

#### Densification scenario – following tasks:

- Checks on population results
- Add employment densification
- Check feasability of the hypothesis (increase of capacity) and adapt if necessary
- Spread the mesure on a few years
- Run with mode choice module
- Calculate transport indicator variation:
  - modal share of public transport
  - average car speed
  - car mileage
  - emissions due to transport
  - average home-work distance
  - average time spent in travel



### Thank you for your attention

